Nothing
## ---- message=FALSE, warning=FALSE--------------------------------------------
library(DisImpact)
library(dplyr) # Ease in manipulations with data frames
## -----------------------------------------------------------------------------
data(ssm_cohort) # provided from DisImpact
dim(ssm_cohort)
# head(ssm_cohort)
## ----echo=FALSE, results='asis'-----------------------------------------------
library(knitr)
kable(ssm_cohort[1:6, !(names(ssm_cohort) %in% c('description', 'categoryLabel', 'source'))], caption='A few rows from the `ssm_cohort` data set. The following variables are ommitted in this print out: `description`, `categoryLabel`, `source`.')
## -----------------------------------------------------------------------------
d_relevant <- ssm_cohort %>%
filter(
categoryLabel %in% c('Completed Both Transfer-Level Math and English Within the District in the First Year Aligned with SCFF'
, 'Attained the Vision Goal Definition of Completion'
, 'Earned an Associate Degree'
, 'Transferred to a Four-Year Postsecondary Institution'
)
, disagg1 %in% c('Ethnicity', 'Foster Youth', 'Veterans')
, disagg2 == 'None' # There's also Gender
, missingFlag == 0
, ferpaFlag == 0
)
d_relevant %>%
group_by(disagg1, subgroup1) %>%
tally
## -----------------------------------------------------------------------------
d_relevant_gender <- ssm_cohort %>%
filter(
categoryLabel %in% c('Completed Both Transfer-Level Math and English Within the District in the First Year Aligned with SCFF'
, 'Attained the Vision Goal Definition of Completion'
, 'Earned an Associate Degree'
, 'Transferred to a Four-Year Postsecondary Institution'
)
, disagg1 %in% c('Ethnicity', 'Foster Youth', 'Veterans')
# , disagg2 == 'None' # There's also Gender
, disagg2 == 'Gender'
, missingFlag == 0
, ferpaFlag == 0
)
d_relevant_gender %>%
group_by(disagg1, subgroup1, disagg2, subgroup2) %>%
tally
## ----warning=FALSE------------------------------------------------------------
# Example 1: By outcome, cohort
di_summ_1 <- di_iterate_on_long(data=d_relevant
, num_var='value'
, denom_var='denom'
, disagg_var_col='disagg1'
, group_var_col='subgroup1'
, cohort_var_col='academicYear'
, summarize_by_vars=c('categoryLabel', 'cohort')
, ppg_reference_groups='all but current' # PPG-1
, di_80_index_reference_groups='all but current' # Relative rates analogous to PPG-1 for reference group
)
nrow(di_summ_1)
nrow(d_relevant)
di_summ_1 %>%
head %>%
as.data.frame
## ----warning=FALSE------------------------------------------------------------
# Example 2: by outcome, collapse cohort academic years
di_summ_2 <- di_iterate_on_long(data=d_relevant
, num_var='value'
, denom_var='denom'
, disagg_var_col='disagg1'
, group_var_col='subgroup1'
# , cohort_var_col='academicYear'
, summarize_by_vars=c('categoryLabel', 'cohort')
, ppg_reference_groups='all but current'
, di_80_index_reference_groups='all but current'
)
nrow(di_summ_2)
nrow(d_relevant)
di_summ_2 %>%
head %>%
as.data.frame
## ----warning=FALSE------------------------------------------------------------
# Example 3: by outcome, intersecting gender
di_summ_3 <- di_iterate_on_long(data=d_relevant_gender
, num_var='value'
, denom_var='denom'
, disagg_var_col='disagg1'
, group_var_col='subgroup1'
, disagg_var_col_2='disagg2'
, group_var_col_2='subgroup2'
, cohort_var_col='academicYear'
, summarize_by_vars=c('categoryLabel', 'cohort')
, ppg_reference_groups='overall'
, di_80_index_reference_groups='all but current'
)
nrow(di_summ_3)
nrow(d_relevant_gender)
di_summ_3 %>%
head %>%
as.data.frame
## ----warning=FALSE------------------------------------------------------------
# Example 4: By outcome, cohort; custom reference groups
di_summ_4 <- di_iterate_on_long(data=d_relevant %>%
filter(subgroup1 != 'All Masked Values') %>% # some foster youth and vetans disaggregation have just a single All Masked Values row; removing these scenarios for purpose of illustration
mutate(custom_reference=ifelse(subgroup1 %in% c('White','Not Foster Youth', 'Not Veteran'), 1, 0)) # create a variable that flags the reference groups
, num_var='value'
, denom_var='denom'
, disagg_var_col='disagg1'
, group_var_col='subgroup1'
, cohort_var_col='academicYear'
, summarize_by_vars=c('categoryLabel', 'cohort')
, custom_reference_group_flag_var='custom_reference' # Specify variable/flag for custom reference groups
)
nrow(di_summ_4)
di_summ_4 %>%
head %>%
as.data.frame
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.