Description Usage Arguments Details Value Author(s) References See Also Examples
Implementation of the DISQUAL methodology. Disqual performs a Fishers Discriminant Analysis on components from a Multiple Correspondence Analysis
1 2 |
variables |
data frame with qualitative explanatory variables (coded as factors) |
group |
vector or factor with group memberships |
validation |
type of validation, either
|
learn |
optional vector of indices for a learn-set.
Only used when |
test |
optional vector of indices for a test-set.
Only used when |
autosel |
logical indicating automatic selection of MCA components |
prob |
probability level for automatic selection of
MCA components. Default |
When validation=NULL
there is no validation
When validation="crossval"
cross-validation is
performed by randomly separating the observations in ten
groups.
When validation="learntest"
validationi is performed by providing a learn-set and a
test-set of observations.
An object of class "disqual"
, basically a list
with the following elements:
raw_coefs |
raw coefficients of discriminant functions |
norm_coefs |
normalizaed coefficients of discriminant functions, ranging from 0 - 1000 |
confusion |
confusion matrix |
scores |
discriminant scores for each observation |
classification |
assigned class |
error_rate |
misclassification error rate |
Gaston Sanchez
Lebart L., Piron M., Morineau A. (2006) Statistique Exploratoire Multidimensionnelle. Dunod, Paris.
Saporta G. (2006) Probabilites, analyse des donnees et statistique. Editions Technip, Paris.
Saporta G., Niang N. (2006) Correspondence Analysis and Classification. In Multiple Correspondence Analysis and Related Methods, Eds. Michael Greenacre and Jorg Blasius, 371-392. Chapman and Hall/CRC
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
# load insurance dataset
data(insurance)
# disqual analysis with no validation
my_disq1 = disqual(insurance[,-1], insurance[,1], validation=NULL)
my_disq1
# disqual analysis with cross-validation
my_disq2 = disqual(insurance[,-1], insurance[,1], validation="crossval")
my_disq2
## End(Not run)
|
Discriminant Analysis on Qualitative Variables
----------------------------------------------
$raw_coefs raw coeffcients
$norm_coefs normalized coefficients
$confusion confusion matrix
$scores scores
$classification assigned class
$error_rate error rate
----------------------------------------------
$raw_coefs
bad good
private -0.05135 0.05080
professional 0.25565 -0.25289
companies 0.12490 -0.12355
female 0.00364 -0.00360
male -0.01226 0.01213
flemish -0.15579 0.15411
french 0.05332 -0.05274
BD_1890_1949 -0.01594 0.01577
BD_1950_1973 0.64884 -0.64184
BD_unknown -0.39455 0.39029
Brussels 0.37897 -0.37488
Other_regions -0.18820 0.18617
BM_minus 0.96468 -0.95427
BM_plus -0.97874 0.96818
YS<86 -0.12340 0.12207
YS>=86 0.16273 -0.16097
HP<=39 -0.34695 0.34320
HP>=40 0.08469 -0.08377
YC_33_89 -0.19634 0.19422
YC_90_91 0.57098 -0.56482
$norm_coefs
bad good
private 0.00 47.39
professional 50.44 0.00
companies 22.53 0.00
female 2.61 18.72
male 0.00 21.17
flemish 0.00 32.28
french 34.35 0.00
BD_1890_1949 62.20 102.62
BD_1950_1973 171.42 0.00
BD_unknown 0.00 161.06
Brussels 93.18 0.00
Other_regions 0.00 87.55
BM_minus 319.28 0.00
BM_plus 0.00 299.99
YS<86 0.00 44.17
YS>=86 47.01 0.00
HP<=39 0.00 66.63
HP>=40 70.91 0.00
YC_33_89 0.00 118.44
YC_90_91 126.06 0.00
$confusion
predicted
original bad good
bad 467 83
good 77 479
$error_rate
[1] 0.1446655
$scores
bad good
[1,] 34.35353 846.3900
[2,] 70.91234 812.0407
[3,] 0.00000 878.6674
[4,] 152.27392 735.5963
[5,] 96.55433 787.9484
[6,] 105.26587 779.7634
...
$classification
[1] good good good good good good
Levels: bad good
...
Discriminant Analysis on Qualitative Variables
----------------------------------------------
$raw_coefs raw coeffcients
$norm_coefs normalized coefficients
$confusion confusion matrix
$scores scores
$classification assigned class
$error_rate error rate
----------------------------------------------
$raw_coefs
bad good
private -0.05135 0.05080
professional 0.25565 -0.25289
companies 0.12490 -0.12355
female 0.00364 -0.00360
male -0.01226 0.01213
flemish -0.15579 0.15411
french 0.05332 -0.05274
BD_1890_1949 -0.01594 0.01577
BD_1950_1973 0.64884 -0.64184
BD_unknown -0.39455 0.39029
Brussels 0.37897 -0.37488
Other_regions -0.18820 0.18617
BM_minus 0.96468 -0.95427
BM_plus -0.97874 0.96818
YS<86 -0.12340 0.12207
YS>=86 0.16273 -0.16097
HP<=39 -0.34695 0.34320
HP>=40 0.08469 -0.08377
YC_33_89 -0.19634 0.19422
YC_90_91 0.57098 -0.56482
$norm_coefs
bad good
private 0.00 47.39
professional 50.44 0.00
companies 22.53 0.00
female 2.61 18.72
male 0.00 21.17
flemish 0.00 32.28
french 34.35 0.00
BD_1890_1949 62.20 102.62
BD_1950_1973 171.42 0.00
BD_unknown 0.00 161.06
Brussels 93.18 0.00
Other_regions 0.00 87.55
BM_minus 319.28 0.00
BM_plus 0.00 299.99
YS<86 0.00 44.17
YS>=86 47.01 0.00
HP<=39 0.00 66.63
HP>=40 70.91 0.00
YC_33_89 0.00 118.44
YC_90_91 126.06 0.00
$confusion
predicted
original bad good
bad 467 83
good 77 479
$error_rate
[1] 0.1573237
$scores
bad good
[1,] 34.35353 846.3900
[2,] 70.91234 812.0407
[3,] 0.00000 878.6674
[4,] 152.27392 735.5963
[5,] 96.55433 787.9484
[6,] 105.26587 779.7634
...
$classification
[1] good good good good good good
Levels: bad good
...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.