Description Usage Arguments Details Value Author(s) References See Also Examples
Performs a Quadratic Discriminant Analysis
1 2 |
variables |
matrix or data frame with explanatory variables |
group |
vector or factor with group memberships |
prior |
optional vector of prior probabilities.
Default |
validation |
type of validation, either
|
learn |
optional vector of indices for a learn-set.
Only used when |
test |
optional vector of indices for a test-set.
Only used when |
prob |
logical indicating whether the group classification results should be expressed in probability terms |
When validation=NULL
there is no validation
When validation="crossval"
cross-validation is
performed by randomly separating the observations in ten
groups.
When validation="learntest"
validationi is performed by providing a learn-set and a
test-set of observations.
An object of class "quada"
, basically a list with
the following elements:
confusion |
confusion matrix |
scores |
discriminant scores for each observation |
classification |
assigned class |
error_rate |
misclassification error rate |
Gaston Sanchez
Lebart L., Piron M., Morineau A. (2006) Statistique Exploratoire Multidimensionnelle. Dunod, Paris.
Tenenhaus G. (2007) Statistique. Dunod, Paris.
Tuffery S. (2011) Data Mining and Statistics for Decision Making. Wiley, Chichester.
classify
, desDA
,
geoDA
, linDA
,
plsDA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
# load iris dataset
data(iris)
# quadratic discriminant analysis with no validation
my_qua1 = quaDA(iris[,1:4], iris$Species)
my_qua1$confusion
my_qua1$error_rate
# quadratic discriminant analysis with cross-validation
my_qua2 = quaDA(iris[,1:4], iris$Species, validation="crossval")
my_qua2$confusion
my_qua2$error_rate
# quadratic discriminant analysis with learn-test validation
learning = c(1:40, 51:90, 101:140)
testing = c(41:50, 91:100, 141:150)
my_qua3 = quaDA(iris[,1:4], iris$Species, validation="learntest",
learn=learning, test=testing)
my_qua3$confusion
my_qua3$error_rate
## End(Not run)
|
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.02
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.1
predicted
original setosa versicolor virginica
setosa 6 4 0
versicolor 0 9 1
virginica 2 0 8
[1] 0.2333333
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.