Description Usage Arguments Details Value Author(s) References See Also Examples
Performs a Linear Discriminant Analysis
1 2 |
variables |
matrix or data frame with explanatory variables |
group |
vector or factor with group memberships |
prior |
optional vector of prior probabilities.
Default |
validation |
type of validation, either
|
learn |
optional vector of indices for a learn-set.
Only used when |
test |
optional vector of indices for a test-set.
Only used when |
prob |
logical indicating whether the group classification results should be expressed in probability terms |
When validation=NULL
there is no validation
When validation="crossval"
cross-validation is
performed by randomly separating the observations in ten
groups.
When validation="learntest"
validation
is performed by providing a learn-set and a test-set of
observations.
An object of class "linda"
, basically a list with
the following elements:
functions |
table with discriminant functions |
confusion |
confusion matrix |
scores |
discriminant scores for each observation |
classification |
assigned class |
error_rate |
misclassification error rate |
Gaston Sanchez
Lebart L., Piron M., Morineau A. (2006) Statistique Exploratoire Multidimensionnelle. Dunod, Paris.
Saporta G. (2006) Probabilites, analyse des donnees et statistique. Editions Technip, Paris.
Tuffery S. (2011) Data Mining and Statistics for Decision Making. Wiley, Chichester.
classify
, desDA
,
geoDA
, quaDA
,
plsDA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Not run:
# load iris dataset
data(iris)
# linear discriminant analysis with no validation
my_lin1 = linDA(iris[,1:4], iris$Species)
my_lin1$confusion
my_lin1$error_rate
# linear discriminant analysis with cross-validation
my_lin2 = linDA(iris[,1:4], iris$Species, validation="crossval")
my_lin2$confusion
my_lin2$error_rate
# linear discriminant analysis with learn-test validation
learning = c(1:40, 51:90, 101:140)
testing = c(41:50, 91:100, 141:150)
my_lin3 = linDA(iris[,1:4], iris$Species, validation="learntest", learn=learning, test=testing)
my_lin3$confusion
my_lin3$error_rate
## End(Not run)
|
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.02
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.02666667
predicted
original setosa versicolor virginica
setosa 10 0 0
versicolor 0 10 0
virginica 0 0 10
[1] 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.