Description Usage Arguments Details Value Author(s) References See Also Examples
Performs a Geometric Predictive Discriminant Analysis
1 2 |
variables |
matrix or data frame with explanatory variables |
group |
vector or factor with group memberships |
validation |
type of validation, either
|
learn |
optional vector of indices for a learn-set.
Only used when |
test |
optional vector of indices for a test-set.
Only used when |
When validation=NULL
there is no validation
When validation="crossval"
cross-validation is
performed by randomly separating the observations in ten
groups.
When validation="learntest"
validationi is performed by providing a learn-set and a
test-set of observations.
An object of class "geoda"
, basically a list with
the following elements:
functions |
table with discriminant functions |
confusion |
confusion matrix |
scores |
discriminant scores for each observation |
classification |
assigned class |
error_rate |
misclassification error rate |
Gaston Sanchez
Lebart L., Piron M., Morineau A. (2006) Statistique Exploratoire Multidimensionnelle. Dunod, Paris.
Saporta G. (2006) Probabilites, analyse des donnees et statistique. Editions Technip, Paris.
Tuffery S. (2011) Data Mining and Statistics for Decision Making. Wiley, Chichester.
classify
, desDA
,
linDA
, quaDA
,
plsDA
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
# load bordeaux wines dataset
data(iris)
# geometric predictive discriminant analysis with no validation
my_geo1 = geoDA(iris[,1:4], iris$Species)
my_geo1$confusion
my_geo1$error_rate
# geometric predictive discriminant analysis with cross-validation
my_geo2 = geoDA(iris[,1:4], iris$Species, validation="crossval")
my_geo2$confusion
my_geo2$error_rate
## End(Not run)
|
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.02
predicted
original setosa versicolor virginica
setosa 50 0 0
versicolor 0 48 2
virginica 0 1 49
[1] 0.01333333
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.