knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(DivInsight) library(dplyr) data("Colombia")
To gain a more detailed insight of the diversity in a large area the group_radius
argument can be used in the clusterise_sites()
function to automatically group sites together by specifying a radius in metres.
A label is assigned to each site denoting which group it belongs to. This label can be seen in the site_group
column in the cluster dataframe.
# subset the dataframe by province name Colombia_Meta <- subset(Colombia, stateProvince == "Meta") # cluster occurrence data by date and generate centred coordinates for each site clusterised_Meta_20km_groups <- clusterise_sites( dataframe = Colombia_Meta, cluster_min_length = 30, group_radius = 20000 ) # view the information for each site/cluster print(clusterised_Meta_20km_groups[[2]])
Base R commands can be used to see how many sites there are in each group and help us decide which group(s) to examine further.
# use table() and sort() to see how many sites there are in each group clusterised_Meta_20km_groups[[2]]$site_group %>% table %>% sort %>% print
Here we choose to examine sites 1, 5, 6, and 8 further by using filter_groups_by_number()
to store each group's data then plot using plot_sites_scatter_H()
.
# store the data for each group Colombia_Meta_1 <- filter_groups_by_number(clusterised_Meta_20km_groups, 1) Colombia_Meta_5 <- filter_groups_by_number(clusterised_Meta_20km_groups, 5) Colombia_Meta_6 <- filter_groups_by_number(clusterised_Meta_20km_groups, 6) Colombia_Meta_8 <- filter_groups_by_number(clusterised_Meta_20km_groups, 8) # plot the data in a scatter plot plot_sites_scatter_H(Colombia_Meta_1, main = "Shannons H at Meta #1") plot_sites_scatter_H(Colombia_Meta_5, main = "Shannons H at Meta #5") plot_sites_scatter_H(Colombia_Meta_6, main = "Shannons H at Meta #6") plot_sites_scatter_H(Colombia_Meta_8, main = "Shannons H at Meta #8")
The charts show varying patterns of diversity over available time frames but it is important to know where these changes are taking place.
map_start()
can be used to create a new map object and map_add()
can be used to add coordinate information.
# create a new map using group 1's coordinates Colombia_Meta_map <- map_start( clusterised_object = Colombia_Meta_1, site_name = "Meta #1", colour = "green" ) # add group 5's coordinates to the map object Colombia_Meta_map <- map_add( existing_map = Colombia_Meta_map, clusterised_object = Colombia_Meta_5, site_name = "Meta #5", colour = "purple" ) # add group 6's coordinates to the map object Colombia_Meta_map <- map_add( existing_map = Colombia_Meta_map, clusterised_object = Colombia_Meta_6, site_name = "Meta #6", colour = "blue" ) # add group 8's coordinates to the map object Colombia_Meta_map <- map_add( existing_map = Colombia_Meta_map, clusterised_object = Colombia_Meta_8, site_name = "Meta #8", colour = "red" )
Once the map has been created it can be viewed.
# view the map
Colombia_Meta_map
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.