inst/shiny/ResultsExplorer/utils.R

# utility functions

# load file into environment
loadFile <- function(file, folder, overwrite, i) {
  if (file != "diagnosticsSummary.csv") {
    print(file)
    tableName <- gsub(".csv$", "", file)
    camelCaseName <- snakeCaseToCamelCase(tableName)
    data <- read.csv(file.path(folder, file), encoding = "UTF-8")

    if (grepl("drugVerbatimEndDate", file)) {
      data <- data %>%
        dplyr::mutate(minimum_verbatim_end_date = ifelse(class(minimum_verbatim_end_date) %in% c("numeric", "integer"),
          format(as.Date(as.POSIXct(minimum_verbatim_end_date, origin = "1970-01-01"))),
          minimum_verbatim_end_date
        )) %>%
        dplyr::mutate(maximum_verbatim_end_date = ifelse(class(maximum_verbatim_end_date) %in% c("numeric", "integer"),
          format(as.Date(as.POSIXct(maximum_verbatim_end_date, origin = "1970-01-01"))),
          maximum_verbatim_end_date
        ))
    } else if (grepl("conceptSummary", file)) {
      data <- data %>%
        dplyr::select(-dplyr::starts_with("X_")) %>%
        dplyr::mutate(concept_code = as.character(concept_code)) %>%
        dplyr::mutate(valid_start_date = ifelse(class(valid_start_date) == "integer",
          format(as.Date(valid_start_date, origin = "1970-01-01")),
          valid_start_date
        )) %>%
        dplyr::mutate(valid_end_date = ifelse(class(valid_end_date) == "integer",
          format(as.Date(valid_end_date, origin = "1970-01-01")),
          valid_end_date
        ))
    } else if (grepl("drugDose", file)) {
      data <- data %>%
        dplyr::mutate(
          result_id = i,
          estimate_value = as.character(estimate_value)
        )
    } else if (grepl("drugSourceConceptsOverall", file)) {
      data <- data %>%
        dplyr::mutate(drug_source_value = as.character(.data$drug_source_value))
    }

    if (!overwrite && exists(camelCaseName, envir = .GlobalEnv)) {
      existingData <- get(camelCaseName, envir = .GlobalEnv)
      if (nrow(existingData) > 0) {
        if (nrow(data) > 0 &&
          all(colnames(existingData) %in% colnames(data)) &&
          all(colnames(data) %in% colnames(existingData))) {
          data <- data[, colnames(existingData)]
        }

        if (!isTRUE(all.equal(colnames(data), colnames(existingData), check.attributes = FALSE))) {
          stop(
            "Table columns do no match previously seen columns. Columns in ",
            file,
            ":\n",
            paste(colnames(data), collapse = ", "),
            "\nPrevious columns:\n",
            paste(colnames(existingData), collapse = ", ")
          )
        }
      }
      data <- rbind(existingData, data)
    }
    assign(camelCaseName, data, envir = .GlobalEnv)

    invisible(NULL)
  }
}

# format a DED check output
formatResult <- function(result) {
  if (nrow(result) > 0) {
    result <- result %>%
      dplyr::rename(any_of(c(ingredient_id = "ingredient_concept_id"))) %>%
      dplyr::mutate_at(vars(starts_with("proportion_")), ~ 100 * .) %>%
      dplyr::rename_with(~ gsub("proportion_", "perc_", .x)) %>%
      dplyr::mutate_at(
        vars(which(sapply(., is.numeric) & !names(.) %in% c(names(.)[grepl("id$", names(.))], "n"))),
        ~ floor(.) + signif(. %% 1, 4)
      )
  }
  return(result)
}

# copied from SQLRender, so we don't need to include this dependency (and rJava)
snakeCaseToCamelCase <- function(string) {
  string <- tolower(string)
  for (letter in letters) {
    string <- gsub(paste("_", letter, sep = ""), toupper(letter), string)
  }
  string <- gsub("_([0-9])", "\\1", string)
  return(string)
}

Try the DrugExposureDiagnostics package in your browser

Any scripts or data that you put into this service are public.

DrugExposureDiagnostics documentation built on Sept. 16, 2025, 9:11 a.m.