View source: R/estimate_pattern_long_1d.R
estimate_pattern_long_1d | R Documentation |
Function estimate_pattern_long_1d
estimate the regular longitudinal pattern
of a univariate variable from a dataset of n subjects. This is usually the first step of dynamic screening.
The pattern can be described by mean, variance, covariance, and distribution depending on the estimation method.
When the estimated pattern is used for monitoring new subjects, the collected data from new subjects are
compared to the estimated pattern for monitoring abnormality.
estimate_pattern_long_1d( data_matrix, time_matrix, nobs, design_interval, n_time_units, time_unit, estimation_method, smoothing_method = "local linear", bw_mean, bw_var, bw_cov, bw_t, bw_y )
data_matrix |
observed data arranged in a numeric matrix format. |
time_matrix |
observation times arranged in a numeric matrix format. |
nobs |
number of observations arranged as an integer vector. |
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
estimation_method |
a character specifying the estimation method. |
smoothing_method |
a character value specifying the smoothing method. |
bw_mean |
a numeric value. |
bw_var |
a numeric value. |
bw_cov |
a numeric value. |
bw_t |
a numeric value. |
bw_y |
a numeric value. |
Estimate the Regular Longitudinal Pattern of Univariate Data
a list that stores the estimated longitudinal pattern and model parameters.
If estimation_method="meanvar"
, returns a list of class pattern_long_1d_meanvar
If estimation_method="meanvarcov"
or "meanvarcovmean"
, returns a list of class pattern_long_1d_meanvarcov
If estimation_method="distribution"
, returns a list of class pattern_long_1d_distribution
If estimation_method="distributionvarcov"
, returns a list of class pattern_long_1d_distributionvarcov
$grid |
Discretized design interval. |
$mean_est |
Estimated mean function. |
$var_est |
Estimated variance function. |
$cov_est |
Estimated covariance function. |
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Li, J. and Qiu, P. (2016). Nonparametric dynamic screening system for monitoring correlated longitudinal data. IIE Transactions, 48(8):772-786.
You, L. and Qiu, P. (2019). Fast computing for dynamic screening systems when analyzing correlated data. Journal of Statistical Computation and Simulation, 89(3):379-394.
You, L., Qiu, A., Huang, B., and Qiu, P. (2020). Early detection of severe juvenile idiopathic arthritis by sequential monitoring of patients' health-related quality of life scores. Biometrical Journal, 62(5).
You, L. and Qiu, P. (2021). A robust dynamic screening system by estimation of the longitudinal data distribution. Journal of Quality Technology, 53(4).
data("data_example_long_1d") result_pattern<-estimate_pattern_long_1d( data_matrix=data_example_long_1d$data_matrix_IC, time_matrix=data_example_long_1d$time_matrix_IC, nobs=data_example_long_1d$nobs_IC, design_interval=data_example_long_1d$design_interval, n_time_units=data_example_long_1d$n_time_units, estimation_method="meanvar", smoothing_method="local linear", bw_mean=0.1, bw_var=0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.