View source: R/evaluate_control_chart.R
evaluate_control_chart_two_groups | R Documentation |
The function evaluate_control_chart_two_groups
evaluates control charts when
the in-control (IC) and out-of-control (OC) charting statistics are supplied separately in two matrices
chart_matrix_IC
and chart_matrix_OC
.
evaluate_control_chart_two_groups( chart_matrix_IC, time_matrix_IC, nobs_IC, starttime_IC, endtime_IC, chart_matrix_OC, time_matrix_OC, nobs_OC, starttime_OC, endtime_OC, design_interval, n_time_units, time_unit, no_signal_action = "omit" )
chart_matrix_IC, chart_matrix_OC |
charting statistics arranged as a numeric matrix. |
time_matrix_IC, time_matrix_OC |
observation times arranged as a numeric matrix. |
nobs_IC, nobs_OC |
number of observations arranged as an integer vector. |
starttime_IC, starttime_OC |
a numeric vector that gives the start times. |
endtime_IC, endtime_OC |
a numeric vector that gives the end times. |
design_interval |
a numeric vector of length two that
gives the left- and right- limits of the design interval.
By default, |
n_time_units |
an integer value that gives the number of basic time units
in the design time interval. |
time_unit |
an optional numeric value of basic time unit. Only used when |
no_signal_action |
a character value specifying how to set signal times when processes with no signals. |
Evaluate Control Charts
an list that stores the evaluation measures.
$thres |
A numeric vector. Threshold values for control limits. |
$FPR |
A numeric vector. False positive rates. |
$TPR |
A numeric vector. True positive rates. |
$ATS0 |
A numeric vector. In-control ATS. |
$ATS1 |
A numeric vector. Out-of-control ATS. |
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Qiu, P., Xia, Z., and You, L. (2020). Process monitoring ROC curve for evaluating dynamic screening methods. Technometrics, 62(2).
pattern<-estimate_pattern_long_1d( data_matrix=data_example_long_1d$data_matrix_IC, time_matrix=data_example_long_1d$time_matrix_IC, nobs=data_example_long_1d$nobs_IC, design_interval=data_example_long_1d$design_interval, n_time_units=data_example_long_1d$n_time_units, estimation_method="meanvar", smoothing_method="local linear", bw_mean=0.1, bw_var=0.1) chart_IC_output<-monitor_long_1d( data_example_long_1d$data_matrix_IC, data_example_long_1d$time_matrix_IC, data_example_long_1d$nobs_IC, pattern=pattern,side="upward",chart="CUSUM", method="standard",parameter=0.2) chart_OC_output<-monitor_long_1d( data_example_long_1d$data_matrix_OC, data_example_long_1d$time_matrix_OC, data_example_long_1d$nobs_OC, pattern=pattern,side="upward",chart="CUSUM", method="standard",parameter=0.2) output_evaluate<-evaluate_control_chart_two_groups( chart_matrix_IC=chart_IC_output$chart[1:50,], time_matrix_IC=data_example_long_1d$time_matrix_IC[1:50,], nobs_IC=data_example_long_1d$nobs_IC[1:50], starttime_IC=rep(0,50), endtime_IC=rep(1,50), chart_matrix_OC=chart_OC_output$chart[1:50,], time_matrix_OC=data_example_long_1d$time_matrix_OC[1:50,], nobs_OC=data_example_long_1d$nobs_OC[1:50], starttime_OC=rep(0,50), endtime_OC=rep(1,50), design_interval=data_example_long_1d$design_interval, n_time_units=data_example_long_1d$n_time_units, no_signal_action="maxtime")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.