View source: R/monitor_long_1d.R
monitor_long_1d | R Documentation |
Monitor Univariate Longitudinal Data
monitor_long_1d( data_matrix_new, time_matrix_new, nobs_new, pattern, side = "upward", chart = "CUSUM", method = "standard", parameter = 0.5, CL = Inf )
data_matrix_new |
observed data arranged in a numeric matrix format. |
time_matrix_new |
observation times arranged in a numeric matrix format. |
nobs_new |
number of observations arranged as an integer vector. |
pattern |
the estimated regular longitudinal pattern |
side |
a character value specifying the sideness/direction of process monitoring |
chart |
a string specifying the control charts to use.
If |
method |
a string |
parameter |
a numeric value |
CL |
a numeric value speficying the control limit. |
a list that stores the result.
$chart |
a numeric matrix, |
$standardized_values |
a numeric matrix, |
Qiu, P. and Xiang, D. (2014). Univariate dynamic screening system: an approach for identifying individuals with irregular longitudinal behavior. Technometrics, 56:248-260.
Li, J. and Qiu, P. (2016). Nonparametric dynamic screening system for monitoring correlated longitudinal data. IIE Transactions, 48(8):772-786.
You, L. and Qiu, P. (2019). Fast computing for dynamic screening systems when analyzing correlated data. Journal of Statistical Computation and Simulation, 89(3):379-394.
You, L., Qiu, A., Huang, B., and Qiu, P. (2020). Early detection of severe juvenile idiopathic arthritis by sequential monitoring of patients' health-related quality of life scores. Biometrical Journal, 62(5).
You, L. and Qiu, P. (2021). A robust dynamic screening system by estimation of the longitudinal data distribution. Journal of Quality Technology, 53(4).
data("data_example_long_1d") result_pattern<-estimate_pattern_long_1d( data_matrix=data_example_long_1d$data_matrix_IC, time_matrix=data_example_long_1d$time_matrix_IC, nobs=data_example_long_1d$nobs_IC, design_interval=data_example_long_1d$design_interval, n_time_units=data_example_long_1d$n_time_units, estimation_method="meanvar", smoothing_method="local linear", bw_mean=0.1, bw_var=0.1) result_monitoring<-monitor_long_1d( data_matrix_new=data_example_long_1d$data_matrix_OC, time_matrix_new=data_example_long_1d$time_matrix_OC, nobs_new=data_example_long_1d$nobs_OC, pattern=result_pattern, side="upward", chart="CUSUM", method="standard", parameter=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.