View source: R/monitor_long_surv.R
monitor_long_surv | R Documentation |
Monitor Longitudinal Data for Survival Outcomes
monitor_long_surv( data_array_new, time_matrix_new, nobs_new, pattern, method, parameter = 0.5, CL = Inf )
data_array_new |
observed data arranged in a numeric array format. |
time_matrix_new |
observation times arranged in a numeric matrix format. |
nobs_new |
number of observations arranged as an integer vector. |
pattern |
the estimated longitudinal and survival pattern from |
method |
a character value specifying the smoothing method |
parameter |
a numeric value. |
CL |
a numeric value specifying the control limit |
a list that stores the result.
$chart |
charting statistics arranged in a matrix. |
$standardized_values |
standardized values arranged in a matrix. |
You, L. and Qiu, P. (2020). An effective method for online disease risk monitoring. Technometrics, 62(2):249-264.
data("data_example_long_surv") result_pattern<-estimate_pattern_long_surv( data_array=data_example_long_surv$data_array_IC, time_matrix=data_example_long_surv$time_matrix_IC, nobs=data_example_long_surv$nobs_IC, starttime=data_example_long_surv$starttime_IC, survtime=data_example_long_surv$survtime_IC, survevent=data_example_long_surv$survevent_IC, design_interval=data_example_long_surv$design_interval, n_time_units=data_example_long_surv$n_time_units, estimation_method="risk", smoothing_method="local linear", bw_beta=0.05, bw_mean=0.1, bw_var=0.1) result_monitoring<-monitor_long_surv( data_array_new=data_example_long_surv$data_array_OC, time_matrix_new=data_example_long_surv$time_matrix_OC, nobs_new=data_example_long_surv$nobs_OC, pattern=result_pattern, method="risk", parameter=0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.