Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(E2E)
## ----include=FALSE------------------------------------------------------------
# Set up a 2-core cluster for parallel processing in this vignette
# This is crucial for passing R CMD check on CI/CD platforms
cl <- parallel::makeCluster(2)
doParallel::registerDoParallel(cl)
## -----------------------------------------------------------------------------
initialize_modeling_system_pro()
## -----------------------------------------------------------------------------
# Run a subset of available prognostic models
results_all_pro <- models_pro(train_pro, model = c("lasso_pro", "rsf_pro"))
# Print summary for Random Survival Forest
print_model_summary_pro("rsf_pro", results_all_pro$rsf_pro)
## -----------------------------------------------------------------------------
# Create a Bagging ensemble with lasso as the base survival model
# n_estimators is reduced for faster execution.
bagging_lasso_pro_results <- bagging_pro(train_pro, base_model_name = "lasso_pro", n_estimators = 5, seed = 123)
print_model_summary_pro("Bagging (LASSO)", bagging_lasso_pro_results)
## -----------------------------------------------------------------------------
# Create a Stacking ensemble with lasso as the meta-model
stacking_lasso_pro_results <- stacking_pro(
results_all_models = results_all_pro,
data = train_pro,
meta_model_name = "lasso_pro"
)
print_model_summary_pro("Stacking (LASSO)", stacking_lasso_pro_results)
## -----------------------------------------------------------------------------
# Apply the trained stacking model to the test set
pro_pred_new <- apply_pro(
trained_model_object = stacking_lasso_pro_results$model_object,
new_data = test_pro,
time_unit = "day"
)
# Evaluate the new prognostic scores
eval_pro_new <- evaluate_predictions_pro(
prediction_df = pro_pred_new,
years_to_evaluate = c(1,3, 5)
)
print(eval_pro_new)
## ----fig.width=6, fig.height=5, warning=FALSE---------------------------------
# Kaplan-Meier Curve
p4 <- figure_pro(type = "km", data = stacking_lasso_pro_results, time_unit= "days")
#print(p4)
# Time-Dependent ROC Curve
p5 <- figure_pro(type = "tdroc", data = stacking_lasso_pro_results, time_unit = "days")
#print(p5)
## ----include=FALSE------------------------------------------------------------
# Stop the parallel cluster
parallel::stopCluster(cl)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.