Description Details Author(s) References Examples
Implements changepoint method in an exact baysian framework for finding single and multiple changepoints within data. Retrieves each changepoint probabilities for segmentations in 1 to Kmax segments. Chooses the optimal number of segments according to the ICL criterion. Compares change-point location between profiles using credibility intervals or likelihood ratios.
Package: | EBS |
Type: | Package |
Version: | 2.0 |
Date: | 2012-11-26 |
License: | GPL |
LazyLoad: | yes |
Alice Cleynen
Maintainer: Alice Cleynen <alice.cleynen@agroparistech.fr>
Rigaill, Lebarbier & Robin (2012): Exact posterior distributions over the segmentation space and model selection for multiple change-point detection problems Statistics and Computing
Cleynen & Robin (2014): Comparing change-point location in independent series Statistics and Computing
Johnson, Kotz & Kemp: Univariate Discrete Distributions
Hall, Kay & Titterington: Asymptotically optimal difference-based estimation of variance in non-parametric regression
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # changes for Poisson model
set.seed(1)
x<-c(rpois(125,1),rpois(100,5),rpois(50,1),rpois(75,5),rpois(50,1))
out <- EBSegmentation(x,Kmax=20)
bic <- EBSBIC(out)
print(bic$NbBIC)
icl <- EBSICL(out)
print(icl$NbICL)
plot(bic$BIC,type='b',pch=1,col='blue',ylim=c(0,1000))
lines(icl$ICL,type='b',pch=2,col='red')
EBSPlotProba(out, icl$NbICL, data=TRUE, file="my-segmentation.pdf")
# changes for Negative Binomial model, comparison of two profiles
set.seed(1)
x1<-c(rnbinom(125,size=0.2,prob=0.8),rnbinom(100,size=0.2, prob=0.1),
rnbinom(50,size=0.2,prob=0.6),rnbinom(75,size=0.2, prob=0.95),
rnbinom(50,size=0.2,prob=0.25))
x2<-c(rnbinom(125,size=0.15,prob=0.75),rnbinom(75,size=0.15,prob=0.2),
rnbinom(75,size=0.15,prob=0.9),rnbinom(125,size=0.15,prob=0.1))
M<-rbind(x1,x2)
E <- EBSProfiles(M,model=3,K=10,homoscedastic=TRUE)
# Computes probabilities for both profile assuming independance but common
#overdispersion
EBSPlotProbaProfiles(E,K=c(5,4))
# Plots posterior distribution of each change points of the two profiles,
#the first into 5 segments, the second into 4.
mass<-CompCredibility(E,Conditions=c(1,2),Tau=c(1,1),K=c(5,4))
# Computes the distribution and credibility interval of the difference of
#location of the first change point of the two profiles,
#the first being devided into 5 segments, the second into 4
mass$massto0
DecisionStatistic<-EBSStatistic(E,Conditions=c(1,2),Tau=c(1,1))
# Computes the likelihood ratio of the profiles having same first
#change-point versus complementary.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.