Nothing
setClass("EBS",
representation(model = "character", data= "numeric", length="numeric", Kmax="numeric", HyperParameters="numeric", Variance="numeric", overdispersion="numeric", Li="matrix", Col="matrix", matProba="matrix", unif="logical"),
prototype(model = "Poisson", Kmax=15),
)
setMethod("show", "EBS",
function (object){
cat ( "Object of class EBS \n " )
cat("\n Model used for the segmentation: \n")
print(object@model)
cat("\n Length of data: \n")
print(object@length)
cat("\n data: \n")
str(object@data)
cat("\n Maximum number of segments considered for the segmentation \n")
print(object@Kmax)
cat("\n Hyper-parameters used for prior on data distribution: \n")
if(object@model=="Poisson")
{
p=c(object@HyperParameters[1],object@HyperParameters[2])
cat("Gamma(alpha,beta), with (alpha,beta)= ")
print(p)
} else if (object@model=="Negative Binomial")
{
p=c(object@HyperParameters[1],object@HyperParameters[2])
cat("Beta(alpha, beta) with (alpha,beta) = ")
print(p)
} else if (object@model=="Normal Homoscedastic")
{
p=c(object@HyperParameters[1],object@HyperParameters[2])
cat("Normal(mu, sigma^2) with (mu,sigma^2)= ")
print(p)
} else
{
p=c(object@HyperParameters[1],object@HyperParameters[2])
q=c(object@HyperParameters[3],object@HyperParameters[4])
cat(" for mean: Normal(mu,sigma) with (mu,variance/sigma)= ")
print(p)
cat("for inverse of variance: Gamma(alpha, beta) with 2(alpha,beta) = ")
print(q)
}
if(object@model=="Negative Binomial")
{
cat("\n used value for inverse of overdispersion \n")
print(object@overdispersion)
}
if(object@model=="Normal Homoscedastic")
{
cat("\n used value for variance\n")
print(object@Variance)
}
cat("\n Log-proba [1,i[ in j segments: (getLi)")
str(object@Li)
cat("\n Log-proba [i,n+1[ in j segments: (getCol)")
str(object@Col)
cat("\n Log-proba [i,j[: (getP)")
str(object@matProba)
})
setGeneric ("getLength",
function(object){ standardGeneric ("getLength" )}
)
setMethod("getLength", "EBS",
function (object){
return ( object@length )
}
)
setGeneric ("getModel",
function(object){ standardGeneric ("getModel" )}
)
setMethod("getModel", "EBS",
function (object){
return ( object@model )
}
)
setGeneric ("getData",
function(object){ standardGeneric ("getData" )}
)
setMethod("getData", "EBS",
function (object){
return ( object@data )
}
)
setGeneric ("getKmax",
function(object){ standardGeneric ("getKmax" )}
)
setMethod("getKmax", "EBS",
function (object){
return ( object@Kmax )
}
)
setGeneric ("getHyperParameters",
function(object){ standardGeneric ("getHyperParameters" )}
)
setMethod("getHyperParameters", "EBS",
function (object){
return ( object@HyperParameters )
}
)
setGeneric ("getVariance",
function(object){ standardGeneric ("getVariance" )}
)
setMethod("getVariance", "EBS",
function (object){
return ( object@Variance )
}
)
setGeneric ("getOverdispersion",
function(object){ standardGeneric ("getOverdispersion" )}
)
setMethod("getOverdispersion", "EBS",
function (object){
return ( object@overdispersion )
}
)
setGeneric ("getLi",
function(object){ standardGeneric ("getLi" )}
)
setMethod("getLi", "EBS",
function (object){
return ( object@Li )
}
)
setGeneric ("getCol",
function(object){ standardGeneric ("getCol" )}
)
setMethod("getCol", "EBS",
function (object){
return ( object@Col )
}
)
setGeneric ("getP",
function(object){ standardGeneric ("getP" )}
)
setMethod("getP", "EBS",
function (object){
return ( object@matProba )
}
)
setGeneric ("getPriorm",
function(object){ standardGeneric ("getPriorm" )}
)
setMethod("getPriorm", "EBS",
function (object){
return ( object@unif )
}
)
############################################################
setClass("EBSProfiles",
representation(model = "character", data= "matrix", length="numeric", NbConditions="numeric", K="numeric", HyperParameters="numeric", Variance="numeric", overdispersion="numeric", Li="list", Col="list", P="list", unif="logical"),
prototype(model = "Poisson"),
)
setMethod("show", "EBSProfiles",
function (object){
cat ( "Object of class EBSProfiles \n " )
cat("\n Model used for the segmentation: \n")
print(object@model)
cat("\n Number of profiles considered: \n")
print(object@NbConditions)
cat("\n Length of each profile: \n")
print(object@length)
cat("\n data: (Data) \n")
str(object@data)
cat("\n Maximum number of segments considered for each profile \n")
print(object@K)
cat("\n Hyper-parameters used for prior on data distribution: \n")
if(object@model=="Poisson")
{
cat('for each profile, Gamma(alpha,beta), with \n')
for (i in 1:object@NbConditions)
{
p = c(object@HyperParameters[2*(i-1)+1],object@HyperParameters[2*(i-1)+2])
cat("Profile ")
print(i)
cat(" (alpha,beta)= ")
print(p)
}
} else if (object@model=="Negative Binomial")
{
cat('for each profile, Beta(alpha,beta), with \n')
for (i in 1:object@NbConditions)
{
p = c(object@HyperParameters[2*(i-1)+1], object@HyperParameters[2*(i-1)+2])
cat("Profile ")
print(i)
cat(" (alpha, beta)= ")
print(p)
}
} else if (object@model=="Normal Homoscedastic")
{
cat('for each profile, Normal(mu, sigma^2), with \n')
for (i in 1:object@NbConditions)
{
p = c(object@HyperParameters[2*(i-1)+1], object@HyperParameters[2*(i-1)+2])
cat("Profile ")
print(i)
cat(" (mu, sigma^2)= ")
print(p)
}
} else
{
cat('for each profile, for mean: Normal(mu, sigma), for inverse of variance: Gamma(alpha, beta), with \n')
for (i in 1:object@NbConditions)
{
p = c(object@HyperParameters[4*(i-1)+1],object@HyperParameters[4*(i-1)+2])
q = c(object@HyperParameters[4*(i-1)+3],object@HyperParameters[4*(i-1)+4])
cat("Profile ")
print(i)
cat(" (mu,variance/sigma)=")
print(p)
cat(" Gamma(2*alpha, 2* beta): \n 2 *alpha = ")
print(q)
}
}
if(object@model=="Negative Binomial")
{
cat("\n used values for inverse of overdispersion \n")
print(object@overdispersion)
}
if(object@model=="Normal Homoscedastic")
{
cat("\n used values for variance\n")
print(object@Variance)
}
cat("\n For each profile l: ")
cat("\n Log-proba [1,j[ in i segments: (Li(x)[[l]])")
str(object@Li)
cat("\n Log-proba [i,n+1[ in j segments: (Col(x)[[l]])")
str(object@Col)
cat("\n Log-proba [i,j[: (matProba(x)[[l]])")
str(object@P)
})
setGeneric ("Length",
function(object){ standardGeneric ("Length" )}
)
setMethod("Length", "EBSProfiles",
function (object){
return ( object@length )
}
)
setGeneric ("Model",
function(object){ standardGeneric ("Model" )}
)
setMethod("Model", "EBSProfiles",
function (object){
return ( object@model )
}
)
setGeneric ("Data",
function(object){ standardGeneric ("Data" )}
)
setMethod("Data", "EBSProfiles",
function (object){
return ( object@data )
}
)
setGeneric ("Kmax",
function(object){ standardGeneric ("Kmax" )}
)
setMethod("Kmax", "EBSProfiles",
function (object){
return ( object@K )
}
)
setGeneric ("HyperParameters",
function(object){ standardGeneric ("HyperParameters" )}
)
setMethod("HyperParameters", "EBSProfiles",
function (object){
return ( object@HyperParameters )
}
)
setGeneric ("Variance",
function(object){ standardGeneric ("Variance" )}
)
setMethod("Variance", "EBSProfiles",
function (object){
return ( object@Variance )
}
)
setGeneric ("Overdispersion",
function(object){ standardGeneric ("Overdispersion" )}
)
setMethod("Overdispersion", "EBSProfiles",
function (object){
return ( object@overdispersion )
}
)
setGeneric ("Li",
function(object){ standardGeneric ("Li" )}
)
setMethod("Li", "EBSProfiles",
function (object){
return ( object@Li )
}
)
setGeneric ("Col",
function(object){ standardGeneric ("Col" )}
)
setMethod("Col", "EBSProfiles",
function (object){
return ( object@Col )
}
)
setGeneric ("matProba",
function(object){ standardGeneric ("matProba" )}
)
setMethod("matProba", "EBSProfiles",
function (object){
return ( object@P )
}
)
setGeneric ("NbConditions",
function(object){ standardGeneric ("NbConditions" )}
)
setMethod("NbConditions", "EBSProfiles",
function (object){
return ( object@NbConditions )
}
)
setGeneric ("Priorm",
function(object){ standardGeneric ("Priorm" )}
)
setMethod("Priorm", "EBSProfiles",
function (object){
return ( object@unif )
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.