Nothing
#'
#' K-means for EFA
#'
#' @description
#' A function performs K-means algorithm on items by calling \link[stats]{kmeans}.
#'
#'
#' @param response A required \code{N} × \code{I} matrix or data.frame consisting of the responses of \code{N} individuals
#' to \code{I} items.
#' @param nfact.max The maximum number of factors discussed by EFAkmeans approach. (default = 10)
#' @param plot A Boolean variable that will print the EFAkmeans plot when set to TRUE, and will not print it when set to
#' FALSE. @seealso \code{\link[EFAfactors]{plot.EFAkmeans}}. (Default = TRUE)
#'
#' @return An object of class \code{EFAkmeans} is a \code{list} containing the following components:
#' \item{wss}{A vector containing all within-cluster sum of squares (WSS).}
#' \item{nfact.SOD}{The number of factors to be retained by the Second-Order Difference (SOD) approach.}
#'
#' @details
#' K-means is a well-established and widely used classical clustering algorithm.
#' It is an unsupervised machine learning algorithm that requires the number of clusters K to be specified in advance.
#' After K-means terminates, the total within-cluster sum of squares (WSS) can be calculated to represent the goodness
#' of fit of the clustering:
#' \deqn{WSS = \sum_{\mathbf{C}_k \in \mathbf{C}} \sum_{i \in \mathbf{C}_k} \|i - \mu_k\|^2}
#'
#' where
#' \eqn{\mathbf{C}} is the set of all clusters.
#' \eqn{\mathbf{C}_k} is the k-th cluster.
#' \eqn{i} represents each item in the cluster \eqn{\mathbf{C}_k}.
#' \eqn{\mu_k} is the centroid of cluster \eqn{\mathbf{C}_k}.
#'
#' Similar to the scree plot where eigenvalues decrease as the number of factors increases,
#' WSS also decreases as K increases. A "significant reduction" in WSS at a particular K may suggest that K is the
#' most appropriate number of clusters, which in exploratory factor analysis implies that the number of factors is K.
#' The "significant reduction" can be identified using the Second-Order Difference (SOD) approach. @seealso \code{\link[EFAfactors]{EFAkmeans}}
#'
#'
#'
#' @examples
#' library(EFAfactors)
#' set.seed(123)
#'
#' ##Take the data.bfi dataset as an example.
#' data(data.bfi)
#'
#' response <- as.matrix(data.bfi[, 1:25]) ## loading data
#' response <- na.omit(response) ## Remove samples with NA/missing values
#'
#' ## Transform the scores of reverse-scored items to normal scoring
#' response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1
#'
#'
#' ## Run EFAkmeans function with default parameters.
#' \donttest{
#' EFAkmeans.obj <- EFAkmeans(response)
#'
#' plot(EFAkmeans.obj)
#'
#' ## Get the heights.
#' wss <- EFAkmeans.obj$wss
#' print(wss)
#'
#' ## Get the nfact retained by SOD
#' nfact.SOD <- EFAkmeans.obj$nfact.SOD
#' print(nfact.SOD)
#'
#'
#' }
#'
#'
#' @importFrom stats cor kmeans
#'
#' @export
EFAkmeans <- function(response, nfact.max = 10, plot=TRUE){
response <- scale(response)
response <- as.matrix(response)
tresponse <- t(response)
# set.seed(123)
k.values <- 2:min(nfact.max, ncol(response)-1)
wss <- c(kmeans(tresponse, centers = 1)$tot.withinss,
sapply(k.values, function(k) {
kmeans(tresponse, centers = k)$tot.withinss
}))
nfact.SOD <- which.max(diff(diff(wss))) + 1
if(length(nfact.SOD) == 0)
nfact.SOD <- 1
EFAkmeans.obj <- list(wss=wss, nfact.SOD=nfact.SOD)
class(EFAkmeans.obj) <- "EFAkmeans"
if(plot) plot(EFAkmeans.obj)
return(EFAkmeans.obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.