Description Usage Arguments Details Value References See Also Examples
Generate random number from specified mixture models, including univariate and multivariate Normal distribution, t-distribution, Skew Normal distribution, and Skew t-distribution.
1 2 3 |
nvect |
A vector of how many points in each cluster,c(n1,n2,..,ng) |
n |
The total number of points |
p |
Dimension of data |
g |
The number of clusters |
distr |
A three letter string indicating the distribution type |
pro |
A vector of mixing proportions, see Details. |
mu |
A numeric matrix with each column corresponding to the mean, see Details. |
sigma |
An array of dimension (p,p,g) with first two dimension corresponding covariance matrix of each component, see Details. |
dof |
A vector of degrees of freedom for each component, see Details. |
delta |
A p by g matrix with each column corresponding to a skew parameter vector, see Details. |
The distribution type, determined by the distr
parameter, which may take any one of the following values:
"mvn" for a multivariate normal, "mvt" for a multivariate t-distribution, "msn" for a multivariate skew normal distribution and "mst" for a multivariate skew t-distribution.
pro
, a numeric vector of the mixing proportion of each component; mu
, a p by g matrix with each column as its corresponding mean;
sigma
, a three dimensional p by p by g array with its jth component matrix (p,p,j) as the covariance matrix for jth component of mixture models;
dof
, a vector of degrees of freedom for each component; delta
, a p by g matrix with its columns corresponding to skew parameter vectors.
both rdemmix
and rdemmix2
return an n by p numeric matrix of generated data;
rdemmix3
gives a list with components data
, the generated data, and cluster
, the clustering of data.
McLachlan G.J. and Krishnan T. (2008). The EM Algorithm and Extensions (2nd). New Jersay: Wiley.
McLachlan G.J. and Peel D. (2000). Finite Mixture Models. New York: Wiley.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #specify the dimension of data, and number of clusters
#the number of observations in each cluster
n1=300;n2=300;n3=400;
nn<-c(n1,n2,n3)
p=2
g=3
#specify the distribution
distr <- "mvn"
#specify mean and covariance matrix for each component
sigma<-array(0,c(2,2,3))
for(h in 2:3) sigma[,,h]<-diag(2)
sigma[,,1]<-cbind( c(1,-0.1),c(-0.1,1))
mu <- cbind(c(4,-4),c(3.5,4),c( 0, 0))
#reset the random seed
set.seed(111)
#generate the dataset
dat <- rdemmix(nn,p,g,distr, mu,sigma)
# alternatively one can use
pro <- c(0.3,0.3,0.4)
n=1000
set.seed(111)
dat <- rdemmix2(n,p,g,distr,pro,mu,sigma)
plot(dat)
# and
set.seed(111)
dobj <- rdemmix3(n,p,g,distr,pro,mu,sigma)
plot(dobj$data)
#other distributions such as "mvt","msn", and "mst".
#t-distributions
dof <- c(3,5,5)
dat <- rdemmix2(n,p,g,"mvt",pro,mu,sigma,dof)
plot(dat)
#Skew Normal distribution
delta <- cbind(c(3,3),c(1,5),c(-3,1))
dat <- rdemmix2(n,p,g,"msn",pro,mu,sigma,delta=delta)
plot(dat)
#Skew t-distribution
dat <- rdemmix2(n,p,g,"mst",pro,mu,sigma,dof,delta)
plot(dat)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.