Nothing
globalVariables(c("descriptive_summary"), "EQUALrepeat", add = TRUE)
function.Measurement_Error <- function(Predefined_lists, rv){
# Lists
plan <- {cbind.data.frame(
analysis_number = paste0("AN", formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0)),
first_menu_choice = rv$first_menu_choice,
second_menu_choice = rv$second_menu_choice,
entry_1 = paste0(rv$entry[[1]], collapse = "%_%"),
entry_2 = paste0(rv$entry[[2]], collapse = "%_%"),
entry_3 = paste0(rv$entry[[3]], collapse = "%_%"),
entry_4 = paste0(rv$entry[[4]], collapse = "%_%"),
entry_5 = paste0(rv$entry[[5]], collapse = "%_%"),
entry_6 = paste0(rv$entry[[6]], collapse = "%_%"),
entry_7 = paste0(rv$entry[[7]], collapse = "%_%"),
entry_8 = paste0(rv$entry[[8]], collapse = "%_%"),
entry_9 = paste0(rv$entry[[9]], collapse = "%_%"),
entry_10 = paste0(rv$entry[[10]], collapse = "%_%"),
entry_11 = paste0(rv$entry[[11]], collapse = "%_%"),
entry_12 = paste0(rv$entry[[12]], collapse = "%_%"),
entry_13 = paste0(rv$entry[[13]], collapse = "%_%"),
entry_14 = paste0(rv$entry[[14]], collapse = "%_%"),
entry_15 = paste0(rv$entry[[15]], collapse = "%_%"),
same_row_different_row = ""
)}
selections <- {paste0(
'<b>entry_1: </b>', paste0(rv$entry[[1]], collapse = "; "), '<br>',
'<b>entry_2: </b>', paste0(rv$entry[[2]], collapse = "; "), '<br>'
)}
code <- {paste0(
'# AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0), '\n',
'rv$first_menu_choice <- "', rv$first_menu_choice, '"\n',
'rv$second_menu_choice <- ', ifelse(is.na(rv$second_menu_choice),NA,paste0('"',rv$second_menu_choice, '"')), '\n',
'rv$entry[[1]] <- ', ifelse(length(rv$entry[[1]]) > 1,
paste0('c("', paste0(rv$entry[[1]], collapse = '", "'), '")'),
paste0('"',rv$entry[[1]],'"')), '\n',
'rv$entry[[2]] <- ', ifelse(length(rv$entry[[2]]) > 1,
paste0('c("', paste0(rv$entry[[2]], collapse = '", "'), '")'),
paste0('"',rv$entry[[2]],'"')), '\n',
'AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0), '_results <- function.',rv$first_menu_choice,'(Predefined_lists, rv)', '\n',
if(length(rv$plan) == 0){
'if (TRUE %in% (AN0001_results$plots_list != "")) {invisible(file.rename(AN0001_results$plots_list, paste0(AN0001_results$plots_list,"_copy")))}
'
} else {
paste0(
'AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_results$results[2,1] <- "AN',formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'"', '\n',
'if (TRUE %in% (AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_results$plots_list != "")) {invisible(file.rename(AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_results$plots_list, str_replace_all(AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_results$plots_list, "/AN0001_", "/AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_")))}', '\n')
},
'write.table(x = AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0),'_results$results, append = TRUE, file = paste0(rv$StorageFolder, "/results.csv"), sep = ",", row.names = FALSE, col.names = FALSE, na = "", quote = FALSE, qmethod = "double")', '\n'
)}
# Get data
data <- rv$import_data$data[,c(rv$entry[[1]], rv$entry[[2]])]
data <- na.omit(data)
# Do the analysis only if at least two rows are present
if (nrow(data) >= 2) {
if (rv$entry[[1]] %in% rv$import_data$categorical) {
if (rv$entry[[1]] %in% rv$import_data$ordinal) {
# If ordinal, Kendall correlation coefficient
concordance_correlation_coefficient <- kendall(data, correct=TRUE)
correlation_coefficient <- data.frame(
`Correlation coefficient` = concordance_correlation_coefficient$value,
`P value` = concordance_correlation_coefficient$p.value,
check.names = FALSE
)
correlation_type <- "Concordance coefficient (Kendall)"
} else if (nlevels(data[,1]) == 2 && nlevels(data[,2]) == 2) {
# if both rv$variables are binary, Cohen's kappa
concordance_correlation_coefficient <- kappa2(data, weight="unweighted",sort.levels=TRUE)
correlation_coefficient <- data.frame(
`Correlation coefficient` = concordance_correlation_coefficient$value,
`P value` = concordance_correlation_coefficient$p.value,
check.names = FALSE
)
correlation_type <- "Concordance coefficient (Cohen's kappa)"
} else {
# more than two levels - it is Fleiss kappa
concordance_correlation_coefficient <- kappam.fleiss(data, exact = FALSE, detail = FALSE)
correlation_coefficient <- data.frame(
`Correlation coefficient` = concordance_correlation_coefficient$value,
`P value` = concordance_correlation_coefficient$p.value,
check.names = FALSE
)
correlation_type <- "Concordance coefficient (Fleiss kappa)"
}
plots_list <- ""
display_plot <- FALSE
} else {
concordance_correlation_coefficient <- CCC(data[,1], data[,2], ci = "z-transform", conf.level = 0.95, na.rm= TRUE)
correlation_coefficient <- concordance_correlation_coefficient$rho.c
colnames(correlation_coefficient) <- c("Point estimate","Lower CI", "Upper CI")
bland_altman <- concordance_correlation_coefficient$blalt
mean_difference <- mean(bland_altman$delta)
se_difference <- (var(bland_altman$delta))^0.5
correlation_type <- "concordance_correlation_coefficient"
plot_title <- paste0(rv$entry[[1]], " versus ", rv$entry[[2]], ": Bland-Altman plot")
plot <- ggplot(data = bland_altman,aes(x = bland_altman[,1], y = bland_altman[,2]))+ geom_point() + xlab("Means") + ylab("Differences") + xlim(round_near(min(min(data[,1]),min(data[,2]))*0.5),round_near(max(max(data[,1]),max(data[,2]))*2)) + ylim(round_near(min(bland_altman[,2])*0.5),round_near(max(bland_altman[,2])*2)) + geom_hline(yintercept=mean_difference, lty = 1, col = "gray") + geom_hline(yintercept=mean_difference - (2 * se_difference), lty = 2, col = "gray") + geom_hline(yintercept=mean_difference + (2 * se_difference), lty = 2, col = "gray") + theme(plot.title = element_text(color="navyblue", size=14, face="bold", hjust = 0.5)) + ggtitle(plot_title)
suppressWarnings(suppressMessages(ggsave(filename = paste0(rv$StorageFolder,'/AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0), '_',
substr(str_replace_all(plot_title, "[^[:alnum:]]","_"), 1, 80) ,'_bland_altman__plot.png'),
plot = plot)))
plots_list <- paste0(rv$StorageFolder,'/AN', formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0), '_',
substr(str_replace_all(plot_title, "[^[:alnum:]]","_"), 1, 80) ,'_bland_altman__plot.png')
display_plot <- TRUE
}
results_display <- data.frame(
`Analysis number` = paste0("AN",formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0)),
`Analysis type` = paste0(Predefined_lists$main_menu[Predefined_lists$menu_short == rv$first_menu_choice], ifelse(! is.na(rv$second_menu_choice), paste0(": ", rv$second_menu_choice), "")),
`Analysis outcome` = "Successful",
`First variable` = rv$entry[[1]],
`Second variable` = rv$entry[[2]],
`Number of observations` = nrow(data),
`Type of correlation coefficient` = correlation_type,
correlation_coefficient,
check.names = FALSE
)
plots_list_display <- plots_list
analysis_outcome <- "Successful"
} else {
results_display <- data.frame(
`Analysis number` = c(paste0("AN",formatC((length(rv$plan) + 1), width = 4, format = "d", flag = 0)), rep(NA, nrow(descriptive_summary)-1)),
`Analysis type` = c(paste0(Predefined_lists$main_menu[Predefined_lists$menu_short == rv$first_menu_choice], ifelse(! is.na(rv$second_menu_choice), paste0(": ", rv$second_menu_choice), "")),rep(NA, nrow(descriptive_summary)-1)),
`Analysis outcome` = c("Unsuccessful", rep(NA, nrow(descriptive_summary)-1)),
`First variable` = c(rv$entry[[1]], rep(NA, nrow(descriptive_summary)-1)),
`Second variable` = c(rv$entry[[2]], rep(NA, nrow(descriptive_summary)-1)),
`Reason for unsuccesful analysis` = "There were very few observations to perform an analysis. There must be at least two valid observations of each variable to perform a successful analysis.",
check.names = FALSE
)
plots_list <- ""
plots_list_display <- plots_list
analysis_outcome <- "Unsuccessful"
display_plot <- FALSE
}
results <- rbind.data.frame(
colnames(results_display),
results_display
)
display_table <- TRUE
function_output <- list(analysis_outcome = analysis_outcome, plan = plan, code = code, results = results, results_display = results_display, plots_list = plots_list, plots_list_display = plots_list_display, selections = selections, display_table = display_table, display_plot = display_plot)
return(function_output)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.