| simulate.glm | R Documentation |
Simulate predictions for newdata for a
model of class glm with mean
coef(object) and variance
vcov(object).
NOTES: The stats package has a
simulate method for
"lm" objects which is used for
lm and glm objects.
It differs from the current simulate.glm
function in two fundamental and important ways:
stats::simulate
returns simulated data consistent with the
model fit assuming the estimated model
parameters are true and exact, i.e.,
ignoring the uncertainty in parameter
estimation. Thus, if family =
poisson,
stats::simulate
returns nonnegative integers.
By contrast the simulate.glm
function documented here returns optionally
simulated coef (coefficients) plus
simulated values for the link and /
or response but currently NOT
pseudo-random numbers on the scale of the
response.
The simulate.glm function documented
here also accepts an optional newdata
argument, not accepted by
stats::simulate. The
stats::simulate
function only returns simulated values for
the cases in the training set with no
possibilities for use for different sets
of conditions.
## S3 method for class 'glm'
simulate(object, nsim = 1,
seed = NULL, newdata=NULL,
type = c("coef", "link", "response"), ...)
object |
an object representing a fitted model
of class |
nsim |
number of response vectors to simulate. Defaults to 1. |
seed |
Argument passed as the first argument to
|
newdata |
optionally, a |
type |
the type of simulations required.
|
... |
further arguments passed to or from other methods. |
1. Save current seed and optionally set
it using code copied from
stats:::simulate.lm.
2. if(is.null(newdata))newdata gets the
data used in the call to glm.
3. newMat <- model.matrix(~., newdata)
4. simCoef <- mvtnorm::rmvnorm(nsim,
coef(object), vcov(object))
5. sims <- tcrossprod(newMat, simCoef)
6. If length(type) == 1: return a
data.frame with one column for
each desired simulation, consistent with the
behavior of the generic simulate
applied to objects of class lm or
glm. Otherwise, return a list of
data.frames of the desired types.
Returns either a data.frame or a
list of data.frames depending
on 'type':
coef |
a |
link |
a |
response |
a |
if length(type)>1 |
a list with simulations on the desired scales. |
The value also has an attribute "seed".
If argument seed is NULL, the
attribute is the value of
.Random.seed before the
simulation started. Otherwise it is the value
of the argument with a kind attribute
with value as.list(RNGkind()).
NOTE: This function currently may not work
with a model fit that involves a multivariate
link or response.
Spencer Graves
simulate
glm
predict.glm
set.seed
library(mvtnorm)
##
## 1. a factor and a numeric
##
PoisReg2 <- data.frame(y=1:6,
x=factor(rep(0:2, 2)), x1=rep(1:2, e=3))
GLMpoisR2 <- glm(y~x+x1, poisson, PoisReg2)
newDat. <- data.frame(
x=factor(rep(c(0, 2), 2), levels=0:2),
x1=3:6)
# NOTE: Force newDat2['x'] to have the same levels
# as PoisReg2['x']
GLMsim2n <- simulate(GLMpoisR2, nsim=3, seed=2,
newdata=newDat.)
##
## 2. One variable: BMA returns
## a mixture of constant & linear models
##
PoisRegDat <- data.frame(x=1:2, y=c(5, 10))
GLMex <- glm(y~x, poisson, PoisRegDat)
# Simulate for the model data
GLMsig <- simulate(GLMex, nsim=2, seed=1)
# Simulate for new data
newDat <- data.frame(x=3:4,
row.names=paste0('f', 3:4))
GLMsio <- simulate(GLMex, nsim=3, seed=2,
newdata=newDat)
##
## 2a. Compute the correct answers manually
##
newMat <- model.matrix(~., newDat)
RNGstate <- structure(2, kind = as.list(RNGkind()))
set.seed(2)
sim <- mvtnorm::rmvnorm(3, coef(GLMex),
vcov(GLMex))
rownames(sim) <- paste0('sim_', 1:3)
simDF <- data.frame(t(sim))
GLMsim.l <- tcrossprod(newMat, sim)
colnames(GLMsim.l) <- paste0('sim_', 1:3)
GLMsim.r <- exp(GLMsim.l)
GLMsim2 <- list(coef=simDF,
link=data.frame(GLMsim.l),
response=data.frame(GLMsim.r) )
attr(GLMsim2, 'seed') <- RNGstate
all.equal(GLMsio, GLMsim2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.