bayes_binom_one_postlike_nstage: Single arm, any stage, cut-point calculator us posterior...

Description Usage Arguments Value See Also Examples

View source: R/bayes_binom_one_postlike_nstage_v1.0.R

Description

Generate cut-points given interim analyses at set numbers of patients for Bayesian posterior likelihood approach to stopping early for futility or efficacy

Usage

1
2
bayes_binom_one_postlike_nstage(reviews, prob.success, prob.failure,
 eta, zeta, p0, p1, prior.a=1e-6, prior.b=1e-6, round=TRUE, warn=TRUE)

Arguments

reviews

Vector of sample sizes to perform analysis at

p0

Probability of success under the null hypothesis

p1

Probability of success under the alternative hypothesis

eta

The smallest probability that p is less than p1 which is allowed to stop for futility

zeta

The smallest probability that p is greater than p0 which is allowed to stop for efficacy

prob.success,prob.failure

The probability of success and failure required to stop early at interim analysis

prior.a, prior.b

The prior parameters for the beta prior distribution

round

Optionally round the probability outputs to 3 significant figures

warn

Turn off warnings for designs which are not optimal

Value

Returns an object of class trialDesign_binom_one

See Also

bayes_binom_one_postprob_onestage

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
reviews=c(7,18)
prob.success=c(0.9)
prob.failure=c(0.9)
eta=0.9
zeta=0.9
p0=0.1
p1=0.3
prior.a=1e-6
prior.b=1e-6
bayes_binom_one_postlike_nstage(reviews,prob.success,prob.failure,
eta,zeta,p0,p1,prior.a,prior.b)

Example output

Loading required package: shiny
Loading required package: VGAM
Loading required package: stats4
Loading required package: splines
Loading required package: data.table
Loading required package: plyr
Loading required package: clinfun
Trial design and properties for single arm, single endpoint trial designs

 reviews success failure
       7       3       0
      18       4       3

p0     : 0.1
p1     : 0.3
Alpha  : 0.097
Power  : 0.804
Exp(p0): 12.46
Exp(p1): 13.21
Eta    : 1 0.923
Zeta   : 0.984 0.917 

EurosarcBayes documentation built on Nov. 17, 2017, 7:03 a.m.