View source: R/pdfdist.evaluate.core.R
| pdfdist.evaluate.core | R Documentation |
Compute Kullback-Leibler \insertCitekullback_information_1951EvaluateCore, Kolmogorov-Smirnov \insertCitekolmogorov_sulla_1933,smirnov_table_1948EvaluateCore and Anderson-Darling distances \insertCiteanderson_asymptotic_1952EvaluateCore between the probability distributions of collection (EC) and core set (CS) for quantitative traits. \loadmathjax
pdfdist.evaluate.core(data, names, quantitative, selected)
data |
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data. |
names |
Name of column with the individual names as a character string |
quantitative |
Name of columns with the quantitative traits as a character vector. |
selected |
Character vector with the names of individuals selected in
core collection and present in the |
A data frame with the following columns.
Trait |
The quantitative trait. |
KL_Distance |
The Kullback-Leibler distance \insertCitekullback_information_1951EvaluateCore between EC and CS. |
KS_Distance |
The Kolmogorov-Smirnov distance \insertCitekolmogorov_sulla_1933,smirnov_table_1948EvaluateCore between EC and CS. |
KS_pvalue |
The p value of the Kolmogorov-Smirnov distance. |
AD_Distance |
Anderson-Darling distance \insertCiteanderson_asymptotic_1952EvaluateCore between EC and CS. |
AD_pvalue |
The p value of the Anderson-Darling distance. |
KS_significance |
The significance of the Kolmogorov-Smirnov distance (*: p \mjseqn\leq 0.01; **: p \mjseqn\leq 0.05; ns: p \mjseqn> 0.05). |
AD_pvalue |
The significance of the Anderson-Darling distance (*: p \mjseqn\leq 0.01; **: p \mjseqn\leq 0.05; ns: p \mjseqn> 0.05). |
KL.plugin, ks.test,
ad.test
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
pdfdist.evaluate.core(data = ec, names = "genotypes",
quantitative = quant, selected = core)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.