| shannon.evaluate.core-deprecated | R Documentation |
Compute the Shannon-Weaver Diversity Index (\mjseqnH'), Maximum diversity (\mjseqnH'_max) and Shannon Equitability Index (\mjseqnE_H) \insertCiteshannon_mathematical_1949EvaluateCore to compare the phenotypic diversity for qualitative traits between entire collection (EC) and core set (CS). \loadmathjax
shannon.evaluate.core(data, names, qualitative, selected)
Shannon-Weaver Diversity Index (\mjseqnH') is computed as follows.
\mjsdeqnH' = -\sum_i=1^kp_i \ln(p_i)
Where \mjseqnp_i denotes the proportion in the group \mjseqnk.
The maximum value of the index (\mjseqnH'_max) is \mjseqn\ln(k). This value occurs when each group has the same frequency.
The Shannon equitability index (\mjseqnE_H) is the Shannon diversity index divided by the maximum diversity.
\mjsdeqnE_H = \fracH'\ln(k)
A data frame with the following columns.
Trait |
The qualitative trait. |
EC_H |
The Shannon-Weaver Diversity Index (\mjseqnH') for EC. |
EC_H |
The Shannon-Weaver Diversity Index (\mjseqnH') for CS. |
EC_Hmax |
The Maximum diversity value (\mjseqnH'_max) for EC. |
CS_Hmax |
The Maximum diversity value (\mjseqnH'_max) for CS. |
EC_EH |
The Shannon Equitability Index (\mjseqnE_H) for EC. |
CS_EH |
The Shannon Equitability Index (\mjseqnE_H) for CS. |
shannon
EvaluateCore-deprecated
data("cassava_CC")
data("cassava_EC")
ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC)
ec$genotypes <- as.character(ec$genotypes)
rownames(ec) <- NULL
core <- rownames(cassava_CC)
quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW",
"ARSR", "SRDM")
qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB",
"ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC",
"PSTR")
ec[, qual] <- lapply(ec[, qual],
function(x) factor(as.factor(x)))
shannon.evaluate.core(data = ec, names = "genotypes",
qualitative = qual, selected = core)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.