View source: R/percentdiff.evaluate.core.R
percentdiff.evaluate.core | R Documentation |
Compute the following differences between the entire collection (EC) and core set (CS).
Percentage of significant differences of mean (\mjteqnMD\%_HuMD\\\%_HuMD%_Hu) \insertCitehu_methods_2000EvaluateCore
Percentage of significant differences of variance (\mjteqnVD\%_HuVD\\\%_HuVD%_Hu) \insertCitehu_methods_2000EvaluateCore
Average of absolute differences between means (\mjteqnMD\%_KimMD\\\%_KimMD%_Kim) \insertCitekim_powercore_2007EvaluateCore
Average of absolute differences between variances (\mjteqnVD\%_KimVD\\\%_KimVD%_Kim) \insertCitekim_powercore_2007EvaluateCore
Percentage difference between the mean squared Euclidean distance among accessions (\mjteqn\overlinedD\%\overlinedD\\\%\overlinedD%) \insertCitestudnicki_comparing_2013EvaluateCore
percentdiff.evaluate.core(data, names, quantitative, selected, alpha = 0.05)
data |
The data as a data frame object. The data frame should possess one row per individual and columns with the individual names and multiple trait/character data. |
names |
Name of column with the individual names as a character string |
quantitative |
Name of columns with the quantitative traits as a character vector. |
selected |
Character vector with the names of individuals selected in
core collection and present in the |
alpha |
Type I error probability (Significance level) of difference. |
The differences are computed as follows.
\mjtdeqnMD\%_Hu = \left ( \fracS_tn \right ) \times 100MD\\\%_Hu = \left ( \fracS_tn \right ) \times 100MD%_Hu = \left ( \fracS_tn \right ) \times 100
Where, \mjseqnS_t is the number of traits with a significant difference between the means of the EC and the CS and \mjseqnn is the total number of traits. A representative core should have \mjteqnMD\%_HuMD\\\%_HuMD%_Hu < 20 % and \mjseqnCR > 80 % \insertCitehu_methods_2000EvaluateCore.
\mjtdeqnVD\%_Hu = \left ( \fracS_Fn \right ) \times 100VD\\\%_Hu = \left ( \fracS_Fn \right ) \times 100VD%_Hu = \left ( \fracS_Fn \right ) \times 100
Where, \mjseqnS_F is the number of traits with a significant difference between the variances of the EC and the CS and \mjseqnn is the total number of traits. Larger \mjteqnVD\%_HuVD\\\%_HuVD%_Hu value indicates a more diverse core set.
\mjtdeqnMD\%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | M_EC_i-M_CS_i \right |M_CS_i \right ) \times 100MD\\\%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | M_EC_i-M_CS_i \right |M_CS_i \right ) \times 100MD%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | M_EC_i-M_CS_i \right |M_CS_i \right ) \times 100
Where, \mjseqnM_EC_i is the mean of the EC for the \mjseqnith trait, \mjseqnM_CS_i is the mean of the CS for the \mjseqnith trait and \mjseqnn is the total number of traits.
\mjtdeqnVD\%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | V_EC_i-V_CS_i \right |V_CS_i \right ) \times 100VD\\\%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | V_EC_i-V_CS_i \right |V_CS_i \right ) \times 100VD%_Kim = \left ( \frac1n\sum_i=1^n \frac\left | V_EC_i-V_CS_i \right |V_CS_i \right ) \times 100
Where, \mjseqnV_EC_i is the variance of the EC for the \mjseqnith trait, \mjseqnV_CS_i is the variance of the CS for the \mjseqnith trait and \mjseqnn is the total number of traits.
\mjtdeqn\overlinedD\% = \frac\overlined_CS-\overlined_EC\overlined_EC \times 100\overlinedD\\\% = \frac\overlined_CS-\overlined_EC\overlined_EC \times 100\overlinedD\ \frac\overlined_CS-\overlined_EC\overlined_EC \times 100
Where, \mjseqn\overlined_CS is the mean squared Euclidean distance among accessions in the CS and \mjseqn\overlined_EC is the mean squared Euclidean distance among accessions in the EC.
A data frame with the values of \mjteqnMD\%_HuMD\\\%_HuMD%_Hu, \mjteqnVD\%_HuVD\\\%_HuVD%_Hu, \mjteqnMD\%_KimMD\\\%_KimMD%_Kim, \mjteqnVD\%_KimVD\\\%_KimVD%_Kim and \mjteqn\overlinedD\%\overlinedD\\\%\overlinedD%.
snk.evaluate.core
,
snk.evaluate.core
data("cassava_CC") data("cassava_EC") ec <- cbind(genotypes = rownames(cassava_EC), cassava_EC) ec$genotypes <- as.character(ec$genotypes) rownames(ec) <- NULL core <- rownames(cassava_CC) quant <- c("NMSR", "TTRN", "TFWSR", "TTRW", "TFWSS", "TTSW", "TTPW", "AVPW", "ARSR", "SRDM") qual <- c("CUAL", "LNGS", "PTLC", "DSTA", "LFRT", "LBTEF", "CBTR", "NMLB", "ANGB", "CUAL9M", "LVC9M", "TNPR9M", "PL9M", "STRP", "STRC", "PSTR") ec[, qual] <- lapply(ec[, qual], function(x) factor(as.factor(x))) percentdiff.evaluate.core(data = ec, names = "genotypes", quantitative = quant, selected = core)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.