Nothing
## ---- setup, echo=FALSE-------------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# library(EvoPhylo)
## ---- include=FALSE-----------------------------------------------------------
devtools::load_all(".")
## ----eval=FALSE---------------------------------------------------------------
# ## Import all log (.p) files from all runs and combine them, with burn-in = 25%
# ## and downsampling to 2.5k trees in each log file
# posterior3p <- combine_log("LogFiles3p", burnin = 0.25, downsample = 1000)
## ---- results='hide'----------------------------------------------------------
data(posterior3p)
## Show first 5 lines of combined log file
head(posterior3p, 5)
## -----------------------------------------------------------------------------
## Reshape imported combined log file from wide to long with FBD_reshape
posterior3p_long <- FBD_reshape(posterior3p, variables = NULL, log.type = "MrBayes")
## ---- eval = FALSE------------------------------------------------------------
# ## Summarize parameters by time bin and analysis
# t3.1 <- FBD_summary(posterior3p_long)
# t3.1
## ---- echo = FALSE------------------------------------------------------------
t3.1 <- FBD_summary(posterior3p_long, digits = 2)
kableExtra::kbl(t3.1, caption = "FBD parameters by time bin") |>
kableExtra::kable_styling(font_size = 15, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- eval=FALSE--------------------------------------------------------------
# ## Export the table
# write.csv(t3.1, file = "FBD_summary.csv")
## ---- fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------
## Plot distribution of the desired FBD parameter by time bin with
## kernel density plot
FBD_dens_plot(posterior3p_long, parameter = "net_speciation",
type = "density", stack = FALSE)
## ---- fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------
## Plot distribution of the desired FBD parameter by time bin with
## stacked kernel density plot
FBD_dens_plot(posterior3p_long, parameter = "net_speciation",
type = "density", stack = TRUE)
## ---- fig.width=4, fig.height=4, fig.align = "center", out.width = "50%"------
## Plot distribution of the desired FBD parameter by time bin with
## a violin plot
FBD_dens_plot(posterior3p_long, parameter = "net_speciation",
type = "violin", stack = FALSE, color = "red")
## ---- fig.width=12, fig.height=4, fig.align = "center", out.width = "100%", warning=FALSE----
## Plot distribution of all FBD parameter by time bin with a violin plot
p1 <- FBD_dens_plot(posterior3p_long, parameter = "net_speciation",
type = "violin", stack = FALSE, color = "red")
p2 <- FBD_dens_plot(posterior3p_long, parameter = "relative_extinction",
type = "violin", stack = FALSE, color = "cyan3")
p3 <- FBD_dens_plot(posterior3p_long, parameter = "relative_fossilization",
type = "violin", stack = FALSE, color = "green3")
library(patchwork)
p1 + p2 + p3 + plot_layout(nrow = 1)
## ---- eval = FALSE------------------------------------------------------------
# ## Save your plot to your working directory as a PDF
# ggplot2::ggsave("Plot_regs.pdf", width = 12, height = 4)
## -----------------------------------------------------------------------------
##### Tests for normality and homoscedasticity for each FBD parameter for all time bins
t3.2 <- FBD_tests1(posterior3p_long)
## ---- eval = FALSE------------------------------------------------------------
# ### Export the output table for all tests
# write.csv(t3.2, file = "FBD_Tests1_Assum.csv")
## ---- eval = FALSE------------------------------------------------------------
# # Output as separate tables
# t3.2$shapiro
## ---- echo = FALSE------------------------------------------------------------
kableExtra::kbl(t3.2$shapiro, digits = 4, align = c('c','c','c','c'),
caption = "Shapiro-Wilk normality test ") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## -----------------------------------------------------------------------------
# OR as single merged table
t3.2$shapiro$net_speciation$bin <- row.names(t3.2$shapiro$net_speciation)
t3.2$shapiro$relative_extinction$bin <- row.names(t3.2$shapiro$relative_extinction)
t3.2$shapiro$relative_fossilization$bin <- row.names(t3.2$shapiro$relative_fossilization)
k1all <- rbind(t3.2$shapiro$net_speciation,
t3.2$shapiro$relative_extinction,
t3.2$shapiro$relative_fossilization,
make.row.names = FALSE)
## ---- eval = FALSE------------------------------------------------------------
# k1all
## ---- echo=FALSE--------------------------------------------------------------
kableExtra::kbl(k1all, digits = 4,
caption = "Shapiro-Wilk normality test ") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- eval = FALSE------------------------------------------------------------
# ## Bartlett's test for homogeneity of variance
# t3.2$bartlett
## ---- echo=FALSE--------------------------------------------------------------
kableExtra::kbl(t3.2$bartlett,
caption = "Bartlett's test") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- eval = FALSE------------------------------------------------------------
# ## Fligner-Killeen test for homogeneity of variance
# t3.2$fligner
## ---- echo=FALSE--------------------------------------------------------------
kableExtra::kbl(t3.2$fligner,
caption = "Fligner-Killeen test") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- fig.width=8, fig.height=6, fig.align = "center", out.width = "100%"-----
## Visualize deviations from normality and similarity of variances
FBD_normality_plot(posterior3p_long)
## ---- eval=FALSE--------------------------------------------------------------
# ## Save your plot to your working directory as a PDF
# ggplot2::ggsave("Plot_normTests.pdf", width = 8, height = 6)
## -----------------------------------------------------------------------------
##### Test for significant differences between each time bin for each FBD parameter
t3.3 <- FBD_tests2(posterior3p_long)
## ---- eval=FALSE--------------------------------------------------------------
# ### Export the output table for all tests
# write.csv(t3.3, file = "FBD_Tests2_Sign.csv")
#
# ## Pairwise t-tests
# # Output as separate tables
# t3.3$t_tests
## ---- echo=FALSE--------------------------------------------------------------
kableExtra::kbl(t3.3$t_tests, digits = 4, align = c('c','c','c','c'),
caption = "Significant tests ") |>
kableExtra::kable_styling(font_size = 10, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## -----------------------------------------------------------------------------
# OR as single merged table
k3.3a <- rbind(t3.3$t_tests$net_speciation,
t3.3$t_tests$relative_extinction,
t3.3$t_tests$relative_fossilization,
make.row.names = FALSE)
## ---- eval=FALSE--------------------------------------------------------------
# k3.3a
## ---- echo = FALSE------------------------------------------------------------
kableExtra::kbl(k3.3a, digits = 4, align = c('c','c','c','c'),
caption = "Pairwise t-tests") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- eval=FALSE--------------------------------------------------------------
# ## Mann-Whitney tests (use if Tests in step #4 fail assumptions)
# # Output as separate tables
# t3.3$mwu_tests
## ---- echo=FALSE--------------------------------------------------------------
kableExtra::kbl(t3.3$mwu_tests, digits = 4, align = c('c','c','c','c'),
caption = "Mann-Whitney tests") |>
kableExtra::kable_styling(font_size = 10, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## -----------------------------------------------------------------------------
# OR as single merged table
k3.3b <- rbind(t3.3$mwu_tests$net_speciation,
t3.3$mwu_tests$relative_extinction,
t3.3$mwu_tests$relative_fossilization,
make.row.names = FALSE)
## ---- eval=FALSE--------------------------------------------------------------
# k3.3b
## ---- echo = FALSE------------------------------------------------------------
kableExtra::kbl(k3.3b, digits=4, align=c('c','c','c','c'),
caption = "Mann-Whitney tests") |>
kableExtra::kable_styling(font_size = 12, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- results='hide'----------------------------------------------------------
posterior <- system.file("extdata", "Penguins_log.log", package = "EvoPhylo")
posterior <- read.table(posterior, header = TRUE)
## Show first 10 lines of combined log file
head(posterior, 5)
## -----------------------------------------------------------------------------
## Reshape imported combined log file from wide to long with FBD_reshape
posterior_long <- FBD_reshape(posterior, variables = NULL, log.type = "BEAST2")
## ---- eval = FALSE------------------------------------------------------------
# ## Summarize parameters by time bin and analysis
# t3.1 <- FBD_summary(posterior_long)
# t3.1
## ---- echo = FALSE------------------------------------------------------------
t3.1 <- FBD_summary(posterior_long, digits = 2)
kableExtra::kbl(t3.1, caption = "FBD parameters by time bin") |>
kableExtra::kable_styling(font_size = 15, full_width = FALSE,
bootstrap_options = "striped", "condensed")
## ---- eval=FALSE--------------------------------------------------------------
# ## Export the table
# write.csv(t3.1, file = "FBD_summary_BEAST2.csv")
## ---- fig.width=8, fig.height=5, fig.align = "center", out.width = "70%"------
## Plot distribution of the desired FBD parameter by time bin with
## kernel density plot
FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD",
type = "density", stack = FALSE)
## ---- fig.width=4, fig.height=4, fig.align = "center", out.width = "50%"------
## Plot distribution of the desired FBD parameter by time bin with
## a violin plot
FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD",
type = "violin", stack = FALSE, color = "red")
## ---- fig.width=12, fig.height=4, fig.align = "center", out.width = "100%", warning=FALSE----
## Plot distribution of all FBD parameter by time bin with a violin plot
p1 <- FBD_dens_plot(posterior_long, parameter = "diversificationRateFBD",
type = "violin", stack = FALSE, color = "red")
p2 <- FBD_dens_plot(posterior_long, parameter = "turnoverFBD",
type = "violin", stack = FALSE, color = "cyan3")
p3 <- FBD_dens_plot(posterior_long, parameter = "samplingProportionFBD",
type = "violin", stack = FALSE, color = "green3")
library(patchwork)
p1 + p2 + p3 + plot_layout(nrow = 1)
## ---- eval = FALSE------------------------------------------------------------
# ## Save your plot to your working directory as a PDF
# ggplot2::ggsave("Plot_regs.pdf", width = 12, height = 4)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.