Nothing
#' (A truncated form of) Punctuation used by six authors (data).
#'
#' How six authors use 3 different types of puncatuation throughout their
#' writing.
#'
#'
#' @name authors
#' @docType data
#' @usage data(authors)
#' @format authors$ca$data: Six authors (rows) and the frequency of three
#' puncutuations (columns). For use with \code{\link{epCA}}.\cr
#' authors$mca$data: A Burt table reformatting of the $ca$data. For use with
#' \code{\link{epMCA}}.
#' @references Brunet, E. (1989). Faut-il ponderer les donnees linguistiques.
#' \emph{CUMFID}, 16, 39-50. \cr Abdi, H., and Williams, L.J. (2010). Principal
#' component analysis. \emph{Wiley Interdisciplinary Reviews: Computational
#' Statistics}, 2, 433-459.\cr Abdi, H., and Williams, L.J. (2010).
#' Correspondence analysis. In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.):
#' \emph{Encyclopedia of Research Design}. Thousand Oaks (CA): Sage. pp.
#' 267-278.
#' @keywords datasets
NULL
#' Twelve wines from 3 regions in France with 18 attributes.
#'
#' This data should be used for discriminant analyses or analyses where the
#' \emph{group} information is important.
#'
#'
#' @name bada.wine
#' @docType data
#' @usage data(bada.wine)
#' @format bada.wine$data: Data matrix with twelve wines (rows) from 3 regions
#' with 18 attributes (columns).\cr bada.wine$design: Design matrix with twelve
#' wines (rows) with 3 regions (columns) to indicate group relationship of the
#' data matrix.
#' @references Abdi, H. and Williams, L.J. (2010). Barycentric discriminant
#' analysis (BADIA). In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.):
#' \emph{Encyclopedia of Research Design}. Thousand Oaks (CA): Sage. pp. 64-75.
#' @keywords datasets
NULL
#' Some of authors' personal beer tasting notes.
#'
#' Tasting notes, preferences, breweries and styles of 38 different craft beers
#' from various breweries, across various styles.
#'
#'
#' @name beer.tasting.notes
#' @docType data
#' @usage data(beer.tasting.notes)
#' @format beer.tasting.notes$data: Data matrix. Tasting notes (ratings) of 38
#' different beers (rows) described by 16 different flavor profiles
#' (columns).\cr beer.tasting.notes$brewery.design: Design matrix. Source
#' brewery of 38 different beers (rows) across 26 breweries (columns). \cr
#' beer.tasting.notes$style.design: Design matrix. Style of 38 different beers
#' (rows) across 20 styles (columns) (styles as listed from Beer Advocate
#' website). \cr beer.tasting.notes$sup.data: Supplementary data matrix. ABV
#' and overall preference ratings of 38 beers described by two features (ABV &
#' overall) in original value and rounded value.
#' @references http://www.beeradvocate.com
#' @source Jenny Rieck and Derek Beaton laboriously ``collected'' these data
#' for ``experimental purposes''.
#' @keywords datasets
NULL
#' Ten assessors sort eight beers into groups.
#'
#' Ten assessors perform a free-sorting task to sort eight beers into groups.
#'
#'
#' @name beers2007
#' @docType data
#' @usage data(beers2007)
#' @format beer2007$data: A data matrix with 8 rows (beers) described by 10
#' assessors (columns).
#' @references Abdi, H., Valentin, D., Chollet, S., & Chrea, C. (2007).
#' Analyzing assessors and products in sorting tasks: DISTATIS, theory and
#' applications. \emph{Food Quality and Preference}, 627-640.
#' @keywords datasets
NULL
#' Small data set on flavor perception and preferences for coffee.
#'
#' One coffee from Oak Cliff roasters (Dallas, TX) was used in this experiment.
#' Honduran source with a medium roast. The coffee was brewed in two ways and
#' served in two ways (i.e., a 2x2 design). Two batches each of coffee were
#' brewed at 180 degrees (Hot) Farenheit or at room temperature (Cold). One of
#' each was served cold or heated back up to 180 degrees (Hot).
#'
#' Flavor profiles measured: Salty, Spice Cabinet, Sweet, Bittery, and Nutty.
#'
#' @name coffee.data
#' @docType data
#' @usage data(coffee.data)
#' @format coffee.data$preferences: Ten participants indicated if they liked a
#' particular serving or not.\cr coffee.data$ratings: Ten participants
#' indicated on a scale of 0-2 the presence of particular flavors. In an array
#' format.
#' @keywords datasets
NULL
#' Alzheimer's Patient-Spouse Dyads.
#'
#' Conversational data from Alzheimer's Patient-Spouse Dyads.
#'
#'
#' @name dica.ad
#' @docType data
#' @usage data(dica.ad)
#' @format dica.ad$data: Seventeen dyads described by 58 variables.\cr
#' dica.ad$design: Seventeen dyads that belong to three groups.
#' @references Williams, L.J., Abdi, H., French, R., & Orange, J.B. (2010). A
#' tutorial on Multi-Block Discriminant Correspondence Analysis (MUDICA): A new
#' method for analyzing discourse data from clinical populations. \emph{Journal
#' of Speech Language and Hearing Research},\bold{ 53}, 1372-1393.
#' @keywords datasets
NULL
#' Twelve wines from 3 regions in France with 16 attributes.
#'
#' This data should be used for discriminant analyses or analyses where the
#' \emph{group} information is important.
#'
#'
#' @name dica.wine
#' @docType data
#' @usage data(dica.wine)
#' @format dica.wine$data: Data matrix with twelve wines (rows) from 3 regions
#' with 16 attributes (columns) \emph{in disjunctive (0/1) coding}.\cr
#' dica.wine$design: Design matrix with twelve wines (rows) with 3 regions
#' (columns) to indicate group relationship of the data matrix.
#' @references Abdi, H. (2007). Discriminant correspondence analysis. In N.J.
#' Salkind (Ed.): \emph{Encyclopedia of Measurement and Statistics}. Thousand
#' Oaks (CA): Sage. pp. 270-275.
#' @keywords datasets
NULL
#' Fisher's iris Set (for ExPosition)
#'
#' The world famous Fisher's iris set: 150 flowers from 3 species with 4
#' attributes.
#'
#'
#' @name ep.iris
#' @docType data
#' @usage data(ep.iris)
#' @format ep.iris$data: Data matrix with 150 flowers (rows) from 3 species
#' with 4 attributes (columns) describing sepal and petal features.\cr
#' ep.iris$design: Design matrix with 150 flowers (rows) with 3 species
#' (columns) indicating which flower belongs to which species.
#' @source http://en.wikipedia.org/wiki/Iris_flower_data_set
#' @keywords datasets
NULL
#' ExPosition: \emph{Ex}ploratory Analysis with the Singular Value
#' Decom\emph{Position}
#'
#' Exposition is defined as \emph{a comprehensive explanation of an idea}. With
#' ExPosition for R, a comprehensive explanation of your data will be provided
#' with minimal effort.\cr\cr The core of ExPosition is the singular value
#' decomposition (SVD; see: \code{\link{svd}}). The point of ExPosition is
#' simple: to provide the user with an overview of their data that only the SVD
#' can provide. ExPosition includes several techniques that depend on the SVD
#' (see below for examples and functions).
#'
#'
#' @name ExPosition-package
#' @aliases ExPosition-package ExPosition
#' @author Questions, comments, compliments, and complaints go to Derek Beaton
#' \email{exposition.software@@gmail.com}.\cr\cr
#'
#' The following people are authors or contributors to ExPosition code, data,
#' or examples:\cr Derek Beaton, Hervé Abdi, Cherise Chin-Fatt, Joseph Dunlop,
#' Jenny Rieck, Rachel Williams, Anjali Krishnan, and Francesca M. Filbey.
#' @seealso \code{\link{epPCA}}, \code{\link{epMDS}}, \code{\link{epCA}},
#' \code{\link{epMCA}}
#' @references Abdi, H., and Williams, L.J. (2010). Principal component
#' analysis. \emph{Wiley Interdisciplinary Reviews: Computational Statistics},
#' 2, 433-459.\cr Abdi, H. and Williams, L.J. (2010). Correspondence analysis.
#' In N.J. Salkind, D.M., Dougherty, & B. Frey (Eds.): \emph{Encyclopedia of
#' Research Design}. Thousand Oaks (CA): Sage. pp. 267-278.\cr Abdi, H. (2007).
#' Singular Value Decomposition (SVD) and Generalized Singular Value
#' Decomposition (GSVD). In N.J. Salkind (Ed.): \emph{Encyclopedia of
#' Measurement and Statistics}.Thousand Oaks (CA): Sage. pp. 907-912.\cr Abdi,
#' H. (2007). Metric multidimensional scaling. In N.J. Salkind (Ed.):
#' \emph{Encyclopedia of Measurement and Statistics.} Thousand Oaks (CA): Sage.
#' pp. 598-605.\cr Greenacre, M. J. (2007). Correspondence Analysis in
#' Practice. \emph{Chapman and Hall}.\cr Benzécri, J. P. (1979). Sur le calcul
#' des taux d'inertie dans l'analyse d'un questionnaire. \emph{Cahiers de
#' l'Analyse des Données}, \bold{4}, 377-378.\cr
#' @import prettyGraphs
#' @importFrom stats cor dist sd
#' @keywords package multivariate
#'
"_PACKAGE"
#' Faces analyzed using Four Algorithms
#'
#' Four algorithms compared using a distance matrix between six faces.
#'
#'
#' @name faces2005
#' @docType data
#' @usage data(faces2005)
#' @format faces2005$data: A data structure representing a distance matrix
#' (6X6) for four algorithms.
#' @references Abdi, H., & Valentin, D. (2007). DISTATIS: the analysis of
#' multiple distance matrices. \emph{Encyclopedia of Measurement and
#' Statistics}. 284-290.
#' @keywords datasets
NULL
#' How twelve French families spend their income on groceries.
#'
#' This data should be used with \code{\link{epPCA}}
#'
#'
#' @name french.social
#' @docType data
#' @usage data(french.social)
#' @format french.social$data: Data matrix with twelve families (rows) with 7
#' attributes (columns) describing what they spend their income on.
#' @references Lebart, L., and Fénelon, J.P. (1975) \emph{Statistique et
#' informatique appliquées}. Paris: Dunod\cr Abdi, H., and Williams, L.J.
#' (2010). Principal component analysis. \emph{Wiley Interdisciplinary Reviews:
#' Computational Statistics}, 2, 433-459.
#' @keywords datasets
NULL
#' A collection of beer tasting notes from untrained assessors.
#'
#' A collection of beer tasting notes of 9 beers, across 16 descriptors, from 4
#' untrained assessors.
#'
#'
#' @name great.beer.tasting.1
#' @docType data
#' @usage data(great.beer.tasting.1)
#' @format great.beer.tasting.1$data: Data matrix (cube). Tasting notes
#' (ratings) of 9 different beers (rows) described by 16 different flavor
#' profiles (columns) by 4 untrained assessors. Thes data contain NAs and must
#' be imputed or adjusted before an analysis is performed.\cr
#' great.beer.tasting.1$brewery.design: Design matrix. Source brewery of 9
#' different beers (rows) across 5 breweries (columns). \cr
#' great.beer.tasting.1$flavor: Design matrix. Intended prominent flavor of 9
#' different beers (rows) across 3 flavor profiles (columns).
#' @source Rachel Williams, Jenny Rieck and Derek Beaton recoded, collected
#' data and/or ``ran the experiment''.
#' @keywords datasets
NULL
#' A collection of beer tasting notes from untrained assessors.
#'
#' A collection of beer tasting notes of 13 beers, across 15 descriptors, from
#' 9 untrained assessors.
#'
#'
#' @name great.beer.tasting.2
#' @docType data
#' @usage data(great.beer.tasting.2)
#' @format great.beer.tasting.2$data: Data matrix (cube). Tasting notes
#' (ratings) of 13 different beers (rows) described by 15 different flavor
#' profiles (columns) by 9 untrained assessors. All original values were on an
#' interval scale of 0-5. Any decimal values are imputed from alternate data
#' sources or additional assessors.\cr great.beer.tasting.2$brewery.design:
#' Design matrix. Source brewery of 13 different beers (rows) across 13
#' breweries (columns). \cr great.beer.tasting.2$style.design: Design matrix.
#' Style of 13 different beers (rows) across 8 styles (columns). Some complex
#' styles were truncated.
#' @source Rachel Williams, Jenny Rieck and Derek Beaton recoded, collected
#' data and/or ``ran the experiment''.
#' @keywords datasets
NULL
#' Data from 17 Alzheimer's Patient-Spouse dyads.
#'
#' Seventeen Alzheimer's Patient-Spouse Dyads had conversations recorded and 58
#' attributes were recoded for this data. Each attribute is a frequency of
#' occurence of the item.
#'
#'
#' @name jlsr.2010.ad
#' @docType data
#' @usage data(jlsr.2010.ad)
#' @format jlsr.2010.ad$ca$data: Seventeen patient-spouse dyads (rows)
#' described by 58 conversation items. For use with \code{\link{epCA}} and
#' discriminant analyses.\cr jlsr.2010.ad$mca$design: A design matrix that
#' indicates which group the dyad belongs to: control (CTRL), early stage
#' Alzheimer's (EDAT) or middle stage Alzheimer's (MDAT).
#' @references Williams, L.J., Abdi, H., French, R., and Orange, J.B. (2010). A
#' tutorial on Multi-Block Discriminant Correspondence Analysis (MUDICA): A new
#' method for analyzing discourse data from clinical populations. \emph{Journal
#' of Speech Language and Hearing Research}, 53, 1372-1393.
#' @keywords datasets
NULL
#' Data of categories of images as view in an \emph{f}MRI experiment.
#'
#' Contains 2 data sets: distance matrix of \emph{f}MRI scans of participants
#' viewing categories of items and distance matrix of the actual pixels from
#' the images in each category.
#'
#'
#' @name jocn.2005.fmri
#' @docType data
#' @usage data(jocn.2005.fmri)
#' @format jocn.2005.fmri$images$data: A distance matrix of 6 categories of
#' images based on a pixel analysis. \cr jocn.2005.fmri$scans$data: A distance
#' matrix of 6 categories of images based on \emph{f}MRI scans.
#' @seealso http://openfmri.org/dataset/ds000105
#' @references O'Toole, A. J., Jiang, F., Abdi, H., and Haxby, J. V. (2005).
#' Partially distributed representations of objects and faces in ventral
#' temporal cortex. \emph{Journal of Cognitive Neuroscience}, \emph{17}(4),
#' 580-590. \cr Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A.,
#' Schouten, J. L., and Pietrini, P. (2001). Distributed and overlapping
#' representation of faces and objects in ventral temporal cortex.
#' \emph{Science}, 293, 2425-2430.\cr
#' @keywords datasets
NULL
#' Six wines described by several assessors with qualitative attributes.
#'
#' Six wines described by several assessors with qualitative attributes.
#'
#'
#' @name mca.wine
#' @docType data
#' @usage data(mca.wine)
#' @format mca.wine$data: A (categorical) data matrix with 6 wines (rows) from
#' several assessors described by 10 attributes (columns). For use with
#' \code{\link{epMCA}}.
#' @references Abdi, H., & Valentin, D. (2007). Multiple correspondence
#' analysis. In N.J. Salkind (Ed.): \emph{Encyclopedia of Measurement and
#' Statistics}. Thousand Oaks (CA): Sage. pp. 651-657.
#' @keywords datasets
NULL
#' Six wines described by several assessors with rank attributes.
#'
#'
#' @name pca.wine
#' @docType data
#' @usage data(pca.wine)
#' @format pca.wine$data: A data matrix with 6 wines (rows) from several
#' assessors described by 11 attributes (columns). For use with
#' \code{\link{epPCA}}.
#' @seealso \link{mca.wine}
#' @references Abdi, H., and Williams, L.J. (2010). Principal component
#' analysis. \emph{Wiley Interdisciplinary Reviews: Computational Statistics},
#' 2, 433-459.
#' @keywords datasets
NULL
#' Small data set for Partial Least Squares-Correspondence Analysis
#'
#' The data come from a larger study on marijuauna dependent individuals (see
#' Filbey et al., 2009) and are illustrated in Beaton et al., 2013. \cr The
#' data contain 2 genetic markers and 3 additional drug use questions from 50
#' marijuauna dependent individuals.
#'
#' In snps.druguse$DATA1:\cr e - Stands for ecstacy use. Responses are yes or
#' no. cc - Stands for crack/cocaine use. Responses are yes or no. cm -
#' Stands for crystal meth use. Responses are yes or no. \cr In
#' snps.druguse$DATA2:\cr COMT - Stands for the COMT gene. Alleles are AA, AG,
#' or GG. Some values are NA. FAAH - Stands for FAAH gene. Alleles are AA, CA,
#' CC. Some values are NA.
#'
#' @name snps.druguse
#' @docType data
#' @usage data(snps.druguse)
#' @format snps.druguse$DATA1: Fifty marijuana dependent participants indicated
#' which, if any, other drugs they have ever used.\cr snps.druguse$DATA2: Fifty
#' marijuana dependent participants were genotyped for the COMT and FAAH genes.
#' @references Filbey, F. M., Schacht, J. P., Myers, U. S., Chavez, R. S., &
#' Hutchison, K. E. (2009). Marijuana craving in the brain. Proceedings of the
#' National Academy of Sciences, 106(31), 13016 -- 13021.
#'
#' Beaton D., Filbey F. M., Abdi H. (2013, in press). Integrating Partial Least
#' Squares Correlation and Correspondence Analysis for Nominal Data. In Abdi H,
#' Chin W, Esposito-Vinzi V, Russolillo G, Trinchera L. \emph{Proceedings in
#' Mathematics and Statistics (Vol. 56): New Perspectives in Partial Least
#' Squares and Related Methods}. New York, NY: Springer-Verlag.
#' @keywords datasets
NULL
#' Six wines described by 3 assessors.
#'
#' How six wines are described by 3 assessors across various flavor profiles,
#' totaling 10 columns.
#'
#'
#' @name wines2007
#' @docType data
#' @usage data(wines2007)
#' @format wines2007$data: A data set with 3 experts (studies) describing 6
#' wines (rows) using several variables using a scale from 1 to 7 with a total
#' of 10 measures (columns).\cr wines2007$table: A data matrix which identifies
#' the 3 experts (studies). \cr
#' @references Abdi, H., & Valentin, D. (2007). STATIS. In N.J. Salkind (Ed.):
#' \emph{Encyclopedia of Measurement and Statistics}. Thousand Oaks (CA): Sage.
#' pp. 955-962.
#' @keywords datasets
NULL
#' Wines Data from 12 assessors described by 15 flavor profiles.
#'
#' 10 experts who describe 12 wines using four variables (cat-pee, passion
#' fruit, green pepper, and mineral) considered as standard, and up to two
#' additional variables if the experts chose.
#'
#'
#' @name wines2012
#' @docType data
#' @usage data(wines2012)
#' @format wines2012$data: A data set with 10 experts (studies) describing 12
#' wines (rows) using four to six variables using a scale from 1 to 9 with a
#' total of 53 measures (columns).\cr wines2012$table: A data matrix which
#' identifies the 10 experts (studies). \cr wines2012$supplementary: A data
#' matrix with 12 wines (rows) describing 4 Chemical Properties (columns).\cr
#' @references Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M.
#' (2012). STATIS and DISTATIS: Optimum multi-table principal component
#' analysis and three way metric multidimensional scaling. \emph{Wiley
#' Interdisciplinary Reviews: Computational Statistics}, 4, 124-167.
#' @keywords datasets
NULL
#' Twenty words described by 2 features.
#'
#' Twenty words ``randomly'' selected from a dictionary and described by two
#' features: length of word and number of definitions.
#'
#'
#' @name words
#' @docType data
#' @usage data(words)
#' @format words$data: A data matrix with 20 words (rows) described by 2
#' attributes (columns). For use with \code{\link{epPCA}}.
#' @references Abdi, H., and Williams, L.J. (2010). Principal component
#' analysis. \emph{Wiley Interdisciplinary Reviews: Computational Statistics},
#' 2, 433-459.
#' @keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.