Nothing
#' @author Alfonso Jiménez-Vílchez
#' @title Jd evaluation measure
#' @description Generates an evaluation function that applies the discriminant function designed by Narendra and Fukunaga \insertCite{Narendra1977}{FSinR} to generate an evaluation measure for a set of features (set measure). This function is called internally within the \code{\link{filterEvaluator}} function.
#'
#' @return Returns a function that is used to generate an evaluation set measure using the Jd.
#' @references
#' \insertAllCited{}
#' @importFrom Rdpack reprompt
#' @import dplyr
#' @importFrom stats cov
#' @import rlang
#' @importFrom rlang UQ
#' @export
#'
#' @examples
#'\dontrun{
#'
#' ## The direct application of this function is an advanced use that consists of using this
#' # function directly to evaluate a set of features
#' ## Classification problem
#'
#' # Generate the evaluation function with JD
#' Jd_evaluator <- Jd()
#' # Evaluate the features (parametes: dataset, target variable and features)
#' Jd_evaluator(ToothGrowth,'supp',c('len','dose'))
#' }
Jd <- function() {
JdEvaluator <- function(data, class, features) {
if (!length(features)) {
return(0)
}
feature.classes <- unique(as.data.frame(data[, class, drop = FALSE]))
if (nrow(feature.classes) != 2) {
stop('Data set is required to have only 2 classes')
}
vectors <- data %>%
select(all_of(c(features, class))) %>%
group_by(across(all_of(class))) %>%
summarise(across(all_of(features), mean), .groups = "drop") %>%
select(all_of(features))
vector <- unlist(vectors[1, ] - vectors[2, ])
matrixA <- data %>%
filter(UQ(as.name(class)) == feature.classes[1, 1]) %>%
select(all_of(features)) %>%
as.matrix() %>%
cov()
matrixB <- data %>%
filter(UQ(as.name(class)) == feature.classes[2, 1]) %>%
select(all_of(features)) %>%
as.matrix() %>%
cov()
return (as.numeric(t(vector) %*% solve((
matrixA + matrixB
) / 2) %*% vector))
}
attr(JdEvaluator, 'shortName') <- "Jd"
attr(JdEvaluator, 'name') <- "Jd"
attr(JdEvaluator, 'target') <- "maximize"
attr(JdEvaluator, 'kind') <- "Set measure"
attr(JdEvaluator, 'needsDataToBeDiscrete') <- FALSE
attr(JdEvaluator, 'needsDataToBeContinuous') <- FALSE
return(JdEvaluator)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.