predict.gppca | R Documentation |
This function predicts the future observations using a GPPCA model. Uncertainty quantification is available.
## S4 method for signature 'gppca'
predict.gppca(object, param, A_hat, step=1, interval=FALSE, interval_data=TRUE)
object |
an object of class |
param |
estimated parameters (beta, sigma2, sigma0_2). |
A_hat |
estimated factor loading matrix. |
step |
a vector. Number of steps to be predicted. Default is 1. |
interval |
a bool value, default is |
interval_data |
a bool value, default is |
pred_mean |
the predictive mean. |
pred_interval_95lb |
the 95% lower bound of the interval. |
pred_interval_95ub |
the 95% upper bound of the interval. |
Mengyang Gu [aut, cre], Xinyi Fang [aut], Yizi Lin [aut]
Maintainer: Mengyang Gu <mengyang@pstat.ucsb.edu>
Gu, M., & Shen, W. (2020), Generalized probabilistic principal component analysis of correlated data, Journal of Machine Learning Research, 21(13), 1-41.
library(FastGaSP)
library(rstiefel)
matern_5_2_funct <- function(d, beta_i) {
cnst <- sqrt(5.0)
matOnes <- matrix(1, nrow = nrow(d), ncol = ncol(d))
result <- cnst * beta_i * d
res <- (matOnes + result + (result^2) / 3) * exp(-result)
return(res)
}
n=200
k=8
d=4
beta_real=0.01
sigma_real=1
sigma_0_real=sqrt(.01)
input=seq(1,n,1)
R0_00=as.matrix(abs(outer(input,input,'-')))
R_r = matern_5_2_funct(R0_00, beta_real)
L_sample = t(chol(R_r))
kernel_type='matern_5_2'
input=sort(input)
delta_x=input[2:length(input)]-input[1:(length(input)-1)]
A=rustiefel(k, d) ##sample from Stiefel manifold
Factor=matrix(0,d,n)
for(i in 1: d){
Factor[i,]=sigma_real^2*L_sample%*%rnorm(n)
}
output=A%*%Factor+matrix(rnorm(n*k,mean=0,sd=sigma_0_real),k,n)
##constucting the gppca.model
gppca_obj <- gppca(input, output, d, shared_params = TRUE,est_d=FALSE)
## estimate the parameters
gppca_fit <- fit.gppca(gppca_obj)
## two-step-ahead prediction
param <- c(gppca_fit$est_beta, gppca_fit$est_sigma2, gppca_fit$est_sigma0_2)
gppca_pred <- predict.gppca(gppca_obj, param, gppca_fit$est_A, step=1:3)
gppca_pred$pred_mean
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.