FlexReg: Regression Models for Bounded Continuous and Discrete Responses

Functions to fit regression models for bounded continuous and discrete responses. In case of bounded continuous responses (e.g., proportions and rates), available models are the flexible beta (Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018) <doi:10.1214/17-BA1079>), the variance-inflated beta (Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020) <doi:10.1177/1471082X18821213>), the beta (Ferrari, S.L.P., Cribari-Neto, F. (2004) <doi:10.1080/0266476042000214501>), and their augmented versions to handle the presence of zero/one values (Di Brisco, A. M., Migliorati, S. (2020) <doi:10.1002/sim.8406>) are implemented. In case of bounded discrete responses (e.g., bounded counts, such as the number of successes in n trials), available models are the flexible beta-binomial (Ascari, R., Migliorati, S. (2021) <doi:10.1002/sim.9005>), the beta-binomial, and the binomial are implemented. Inference is dealt with a Bayesian approach based on the Hamiltonian Monte Carlo (HMC) algorithm (Gelman, A., Carlin, J. B., Stern, H. S., Rubin, D. B. (2014) <doi:10.1201/b16018>). Besides, functions to compute residuals, posterior predictives, goodness of fit measures, convergence diagnostics, and graphical representations are provided.

Package details

AuthorRoberto Ascari [aut, cre], Agnese M. Di Brisco [aut, cre], Sonia Migliorati [aut], Andrea Ongaro [aut]
MaintainerRoberto Ascari <roberto.ascari@unimib.it>
LicenseGPL (>= 2)
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the FlexReg package in your browser

Any scripts or data that you put into this service are public.

FlexReg documentation built on Sept. 29, 2023, 9:06 a.m.