dBetaBin | R Documentation |
The function computes the probability mass function of the beta-binomial distribution.
dBetaBin(x, size, mu, theta = NULL, phi = NULL)
x |
a vector of quantiles. |
size |
the total number of trials. |
mu |
the mean parameter. It must lie in (0, 1). |
theta |
the overdispersion parameter. It must lie in (0, 1). |
phi |
the precision parameter, an alternative way to specify the overdispersion parameter |
The beta-binomial distribution has probability mass function
f_{BB}(x;\mu,\phi)={n\choose x} \frac{\Gamma{(\phi)}}{\Gamma{(\mu\phi)}\Gamma{((1-\mu)\phi)}} \frac{\Gamma{(\mu\phi+x)}\Gamma{((1-\mu)\phi + n - x)}}{\Gamma{(\phi + n)}},
for x \in \lbrace 0, 1, \dots, n \rbrace
, where 0<\mu<1
identifies the mean and \phi=(1-\theta)/\theta >0
is the precision parameter.
A vector with the same length as x
.
Ascari, R., Migliorati, S. (2021). A new regression model for overdispersed binomial data accounting for outliers and an excess of zeros. Statistics in Medicine, 40(17), 3895–3914. doi:10.1002/sim.9005
dBetaBin(x = 5, size = 10, mu = .3, phi = 10)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.