FlexReg-package | R Documentation |
The FlexReg package provides functions and methods to implement several types of regression models for bounded continuous responses (e.g., proportions and rates) and bounded discrete responses (e.g., number of successes in n trials). Inferential statistical analysis is dealt with by a Bayesian estimation procedure based on the Hamiltonian Monte Carlo (HMC) algorithm through the rstan package.
Ascari, R., Migliorati, S. (2021). A new regression model for overdispersed binomial data accounting for outliers and an excess of zeros. Statistics in Medicine, 40(17), 3895–3914. doi:10.1002/sim.9005
Di Brisco, A. M., Migliorati, S. (2020). A new mixed-effects mixture model for constrained longitudinal data. Statistics in Medicine, 39(2), 129–145. doi:10.1002/sim.8406
Di Brisco, A. M., Migliorati, S., Ongaro, A. (2020). Robustness against outliers: A new variance inflated regression model for proportions. Statistical Modelling, 20(3), 274–309. doi:10.1177/1471082X18821213
Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions. Journal of Applied Statistics, 31(7), 799–815. doi:10.1080/0266476042000214501
Migliorati, S., Di Brisco, A. M., Ongaro, A. (2018). A New Regression Model for Bounded Responses. Bayesian Analysis, 13(3), 845–872. doi:10.1214/17-BA1079
Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. https://mc-stan.org
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.