Nothing
#' V(alue)A(mbiguity)F(uzziness) resampling method for triangular and trapezoidal fuzzy numbers
#'
#' @description
#' `VAFMethod` returns the secondary (bootstrapped) sample and uses the resampling
#' scheme which does not change the values, ambiguities and fuzziness of the fuzzy variables from
#' the initial sample (the VAF method, see (Grzegorzewski et al., 2020)).
#'
#'
#' @details
#' The initial sample should consist of triangular or trapezoidal fuzzy numbers, given as a single vector or a whole matrix.
#' In each row, there should be a single fuzzy number in one of the forms:
#' \enumerate{
#' \item left end of the support, left end of the core, right end of the core, right end of the support, or
#' \item left increment of the support, left end of the core, right end of the core, right increment of the support.
#' }
#' In this second case, the parameter \code{increases=TRUE} has to be used.
#'
#' The resampling procedure produces \code{b} fuzzy values.
#' During the first step, the fuzzy value from the initial sample is randomly chosen (with repetition).
#' Then the new fuzzy variable, which preserves the value, ambiguity and fuzziness of the old one, is randomly created.
#' If the parameter \code{b} is not specified, it is equal to the length of the initial sample.
#' The output is given in the same form as the initial sample.
#'
#'
#' @param initialSample Initial sample of triangular or trapezoidal fuzzy numbers.
#'
#' @param b The number of fuzzy values in the resampled (secondary) sample.
#' If this parameter is not specified, the number of values in the initial sample is used.
#' The parameter should be integer value more than 0.
#'
#'
#' @param increases If \code{TRUE} is used, then the initial sample should consist of the fuzzy numbers in the form:
#' left increment of the support, left end of the core, right end of the core,
#' right increment of the support. Otherwise, the default value \code{FALSE} is used and the fuzzy numbers should be given in the form:
#' left end of the support, left end of the core, right end of the core,
#' right end of the support.
#'
#' @return This function returns matrix with \code{b} rows of double values.
#' In each row, there is a single resampled fuzzy number.
#' These fuzzy numbers have the same form as the values from the initial sample depending on the provided parameter \code{increases}.
#'
#'
#' @family resampling functions
#'
#' @seealso \code{\link{ClassicalBootstrap}},
#' \code{\link{EWMethod}} for the EW method, \code{\link{VAFMethod}} for the VAF method,
#' \code{\link{VAAMethod}} for the VAA method, \code{\link{DMethod}} for the d method, \code{\link{WMethod}} for the w method
#'
#' @importFrom stats runif
#'
#' @examples
#'
#' # prepare some fuzzy numbers (first type of the initial sample)
#'
#' fuzzyValues <- matrix(c(0.25,0.5,1,1.25,0.75,1,1.5,2.2,-1,0,0,2),
#' ncol = 4,byrow = TRUE)
#'
#' # generate the secondary sample using the VAF method
#'
#' set.seed(12345)
#'
#' VAFMethod(fuzzyValues)
#'
#' VAFMethod(fuzzyValues,b=4)
#'
#' # prepare some fuzzy numbers (second type of the initial sample)
#'
#' fuzzyValuesInc <- matrix(c(0.25,0.5,1,0.25,0.25,1,1.5,0.7,1,0,0,2),
#' ncol = 4,byrow = TRUE)
#'
#' # generate the secondary sample using the VAF method
#'
#' VAFMethod(fuzzyValuesInc,increases = TRUE)
#'
#' VAFMethod(fuzzyValuesInc,b=4,increases = TRUE)
#'
#' @references
#'
#' Grzegorzewski, P., Hryniewicz, O., Romaniuk, M. (2020)
#' Flexible resampling for fuzzy data based on the canonical representation
#' International Journal of Computational Intelligence Systems, 13 (1), pp. 1650-1662
#'
#' @export
#'
# VAF resampling method
VAFMethod <- function(initialSample, b = n, increases = FALSE)
{
# changing possible vector to matrix
if(is.vector(initialSample))
{
initialSample <- matrix(initialSample,nrow=1)
}
ParameterCheckForInitialSample(initialSample)
# setting n
n <- nrow(initialSample)
# checking b parameter
if(!IfInteger(b) | b <= 0)
{
stop("Parameter b should be integer value and > 0")
}
# checking the validity of increases
if(!is.logical(increases))
{
stop("Parameter increases should have logical value")
}
# check form of the initial sample
if(increases)
{
initialSample <- TransformFromIncreases(initialSample)
}
# checking consistency of fuzzy numbers
if(!all(apply(initialSample, 1, IsFuzzy)))
{
stop("Some values in initial sample are not correct fuzzy numbers")
}
# calculate value, ambiguity and fuzziness for initial sample
initialValues <- CalculateValue(initialSample)
initialAmbiguites <- CalculateAmbiguity(initialSample)
initialFuzziness <- CalculateFuzziness(initialSample)
# cat("Calculated values: ", initialValues, "\n")
# cat("Calculated ambiguites: ", initialAmbiguites, "\n")
# cat("Calculated fuzziness: ", initialFuzziness, "\n")
# generation of numbers of TPFNs based on intial sample
numbers <- sample(n,b, replace = TRUE)
# cat("Generated numbers:", numbers, "\n")
# initialize output
outputSample <- matrix(0, nrow = b, ncol = 4)
# resample
for (i in 1:b)
{
# check if selected fuzzy number is triangular
if (IsTriangular(initialSample[numbers[i],]))
{
outputSample[i,] <- initialSample[numbers[i],]
# cat("i: ", i, "TRFN\n")
}
else
{
# choose value, width, fuzziness
selectedValue <- initialValues[numbers[i]]
selectedAmbiguity <- initialAmbiguites[numbers[i]]
selectedFuzziness <- initialFuzziness[numbers[i]]
# cat("Selected value: ", selectedValue, "\n")
# cat("Selected ambiguity: ", selectedAmbiguity, "\n")
# cat("Selected fuzziness: ", selectedFuzziness, "\n")
# we have TPFN, generate the output
s <- selectedAmbiguity - 2/3 * selectedFuzziness
c <- runif(1,selectedValue-2/3 * selectedFuzziness,selectedValue+2/3 * selectedFuzziness)
l <- 3*(selectedAmbiguity-selectedValue+c-s)
r <- 3*(selectedAmbiguity+selectedValue-c-s)
# cat("s: ", s, "c: ", c, "l: ", l, "r: ", r, "\n")
# cat("i: ", i, "TPFN\n")
outputSample[i,] <- c(c-l-s,c-s,c+s,c+r+s)
}
}
# change form of the output sample
if(increases)
{
outputSample <- TransformToIncreases(outputSample)
}
return(outputSample)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.