inst/examples/ex.R

devtools::build_manual
devtools::check


GECal:::GEcalib(~Sepal.Length + Sepal.Width + g(Petal.Width), dweight = Petal.Width,
         data = iris, const = rep(1, 4),
         method = "GEC",entropy = 1)

GECal:::GEcalib(~Sepal.Length + Sepal.Width + g(Petal.Width), dweight = Petal.Width,
                 data = iris, const = c(1,1,1,2),
                 method = "GEC",entropy = 1, G.scale = 2)

GECal:::GEcalib(~Sepal.Length + Sepal.Width + g(Petal.Width), dweight = Petal.Width,
                 data = iris, const = c(1,1,1,2 + 2 * log(2) * nrow(iris)),
                 method = "GEC",entropy = 1, weight.scale = 2)




GECal:::GEcalib(~Sepal.Length + Sepal.Width, dweight = Petal.Width,
         data = iris, const = rep(1, 3),
         method = "DS",entropy = 1)



GECal:::GEcalib(~iris$Sepal.Length + iris$Sepal.Width + g(iris$Petal.Width), dweight = iris$Petal.Width,
         const = rep(1, 4), data = NULL,
         method = "GEC",entropy = 1)

GECal:::GEcalib(~iris$Sepal.Length + iris$Sepal.Width, dweight = iris$Petal.Width,
         const = rep(1, 3),
         method = "DS",entropy = 1)


GECal:::GEcalib(~iris$Sepal.Length + Sepal.Width, dweight = iris$Petal.Width,
                 data = iris, const = rep(1, 3),
                 method = "DS",entropy = 1)


Xs=cbind(
  c(1,1,1,1,1,1,1,1,1,1),
  c(1,1,1,1,1,0,0,0,0,0),
  c(1,3,5,7,9,6,7,8,9,10)
)

y=rnorm(10)
# inclusion probabilities
piks=1:10/10; piks=piks/ sum(piks); d=1/piks
# vector of population totals
total=c(160,124,700); colSums(Xs * d)

# Calibration weights
sampling::calib(Xs, total, d = d, method="raking") * d
calibration <- GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "DS", entropy = "ET")
GECal::estimate(y ~ 1, calibration = calibration)$estimate


GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "GEC0", entropy = "ET")$w

GECal:::GEcalib(~ 0 + Xs + g(d), dweight = d, const = c(total, NA), method = "GEC", entropy = "ET")$w

GECal:::GEcalib(~ 0 + g(d) + Xs, dweight = d, const = c(sum(g(d, entropy = 0) * d), total),
                 method = "GEC", entropy = "ET")$w

GECal:::GEcalib(~ 0 + Xs + g(d), dweight = d, const = c(total, sum(g(d, entropy = 0) * d)),
                 method = "GEC", entropy = "ET")$w

GECal:::GEcalib(~ 0 + Xs + g(d), dweight = d, const = c(total, sum(g(d, entropy = -1/2) * d) + 1),
                 method = "GEC", entropy = -1/2)$w

# colSums(cbind(Xs, g(d, entropy = 0)) * GECal:::GEcalib(~ 0 + Xs + g(d), dweight = d, const = c(total, sum(g(d, entropy = 0) * d)),
#                               method = "GEC", entropy = "ET"))

GECal:::GEcalib(~ g(d), dweight = d, const = c(150, sum(g(d, entropy = -1) * d)),
                 method = "GEC", entropy = "EL")$w

GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "DS", entropy = "EL")$w
GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "DS", entropy = "SL")$w

GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "DS", entropy = -0.5)$w

sapply(seq(-10, 10, length = 100),
       function(x) {
         sum(GECal:::GEcalib(~ 0 + Xs, dweight = d, const = total, method = "DS", entropy = x)$w);
       })

sapply(c(seq(-8, 8, length = 100)),
       function(x) {
         sum(GECal:::GEcalib(~ g(d), dweight = d,
                              const = c(160, sum(g(d, entropy = x) * d)), method = "GEC", entropy = x)$w);
       })

GECal:::GEcalib(~ g(d), dweight = d,
                 const = c(150, sum(g(d, entropy = "CE") * d)), method = "GEC", entropy = "CE")$w

GECal:::GEcalib(~ g(d), dweight = d,
                 const = c(150, sum(g(d, entropy = "PH", del = quantile(d, 0.5)) * d)),
                 method = "GEC", entropy = "PH", del = quantile(d, 0.5))$w

GECal:::GEcalib(~ g(d), dweight = d,
                const = c(150, sum(g(d, entropy = "PH", del = quantile(d, 0.8)) * d)),
                method = "GEC", entropy = "PH", del = quantile(d, 0.8))$w

GECal:::GEcalib(~ g(d), dweight = d,
                 const = c(150, sum(g(d, entropy = "PH", del = quantile(d, 1)) * d)),
                 method = "GEC", entropy = "PH", del = quantile(d, 1))$w

GECal:::GEcalib(~ g(d), dweight = d,
                 const = c(150, sum(g(d, entropy = 1) * d)), method = "GEC", entropy = "SL")$w


GECal:::GEcalib(~ g(d), dweight = d, G.scale = c(rep(c(1,2), 5)),
                 const = c(150, NA), method = "GEC", entropy = "CE")$w




library(survey)
data(api)

dsrs<-svydesign(id=~1, weights=~pw, data=apisrs)

pop.totals<-c(`(Intercept)`=6194, stypeH=755, stypeM=1018)

# tmplm <- lm(api00~stype, data = apisrs)
# head(cbind(tmplm$fitted.values, apisrs$api00))

(dsrsg<-calibrate(dsrs, ~stype, pop.totals))
svytotal(~api00, dsrsg)
# str(unclass(dsrs))

calibration <- GECal:::GEcalib(~ stype, dweight = pw, data = apisrs,
                               const = pop.totals, method = "DS", entropy = "SL")

n = nrow(apisrs); N = sum(apisrs$pw)

# pimat <- matrix(n * (n-1) / N / (N-1) - (n / N)^2, nrow = n, ncol = n)
# diag(pimat) = n / N - (n / N)^2
# pimat <- matrix(0, nrow = n, ncol = n)
# diag(pimat) = n / N
GECal::estimate(api00 ~ 1, data = apisrs, calibration = calibration)

# devtools::check(manual = T, document = T)
# GECal::GEcalib()
# lm
# sampling::calib()
# 
# survey::svydesign()
# 
# survey::calibrate()
# 
# 
set.seed(11)
N = 10000
x = data.frame(x1 = rnorm(N, 2, 1), x2= runif(N, 0, 4))
pi = pt((-x[,1] / 2 - x[,2] / 2), 3);
pi = ifelse(pi >.7, .7, pi)

delta = rbinom(N, 1, pi)
Index_S = (delta == 1)
n = sum(Index_S); #print(n)
pi_S = pi[Index_S]; d_S = 1 / pi_S
x_S = x[Index_S,,drop = F]
# pimat_S = diag(d_S^2 - d_S) / N^2 # 1 / pi_i * (1 - 1 / pi_i)

w1 <- GECal::GEcalib(~ ., dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x)),
                     entropy = "ET", method = "DS")$w

w2 <- GECal::GEcalib(~ ., dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x)),
                     entropy = "ET", method = "GEC0")$w

all.equal(w1, w2)

w3 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, log(1 / pi))),
                     entropy = "ET", method = "GEC")$w

w4 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, NA)),
                     entropy = "ET", method = "GEC")$w

all.equal(w1, w4)

w5 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, NA)),
                     entropy = "ET", method = "GEC", K_alpha = "log")$w


e = rnorm(N, 0, 1)
y = x[,1] + x[,2] + e;
y_S = y[Index_S] # plot(x_S, y_S)
# data_S = cbind(pi, data)[Index_S,]


########################################


set.seed(11)
N = 10000
x = data.frame(x1 = rnorm(N, 2, 1), x2= runif(N, 0, 4))
pi = pt((-x[,1] / 2 - x[,2] / 2), 3);
pi = ifelse(pi >.7, .7, pi)

delta = rbinom(N, 1, pi)
Index_S = (delta == 1)
pi_S = pi[Index_S]; d_S = 1 / pi_S
x_S = x[Index_S,,drop = F]
# pimat = diag(d_S^2 - d_S) / N^2 # 1 / pi_i * (1 - 1 / pi_i)

e = rnorm(N, 0, 1)
y = x[,1] + x[,2] + e;
y_S = y[Index_S] # plot(x_S, y_S)

calibration <- GECal::GEcalib(~ 0, dweight = d_S, data = x_S,
                               const = numeric(0),
                               entropy = "SL", method = "DS")
GECal::estimate(y_S ~ 1, calibration = calibration)$estimate # HT estimator

calibration0 <- GECal::GEcalib(~ 1, dweight = d_S, data = x_S,
                               const = N,
                               entropy = "SL", method = "DS")
GECal::estimate(y_S ~ 1, calibration = calibration0)$estimate # Hajek estimator
# sum(y_S * d_S) * N / sum(d_S)

calibration1 <- GECal::GEcalib(~ ., dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x)),
                     entropy = "ET", method = "DS")

GECal::estimate(y_S ~ 1, calibration = calibration1)$estimate

calibration2 <- GECal::GEcalib(~ ., dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x)),
                     entropy = "ET", method = "GEC0")

GECal::estimate(y_S ~ 1, calibration = calibration2)$estimate

calibration3 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, log(1 / pi))),
                     entropy = "ET", method = "GEC")

GECal::estimate(y_S ~ 1, calibration = calibration3)$estimate

calibration4 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, NA)),
                     entropy = "ET", method = "GEC")

GECal::estimate(y_S ~ 1, calibration = calibration4)$estimate

calibration5 <- GECal::GEcalib(~ . + g(d_S), dweight = d_S, data = x_S,
                     const = colSums(cbind(1, x, NA)),
                     entropy = "ET", method = "GEC", K_alpha = "log")

GECal::estimate(y_S ~ 1, calibration = calibration5)$estimate


g(1 / pi, entropy = 1)

library(survey)
data(api)

ncol(Xs1); length(total1)

calibration <- GECal::GEcalib(~ 0, dweight = d_S, data = acresCRD,
                              const = numeric(0),
                              entropy = "EL", method = "DS")
GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

# calibration <- GECal::GEcalib(~ 0 + ., dweight = d_S, data = acresCRD,
#                                const = total,
#                                entropy = "EL", method = "DS")
# GECal::estimate(y_S ~ 1, calibration = calibration, pimat = pimat)$estimate

calibration <- GECal::GEcalib(~ 0 + ., dweight = d_S, data = acresCRD,
                              const = total,
                              entropy = "SL", method = "DS")
GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

calibration <- GECal::GEcalib(~ 0 + ., dweight = d_S, data = acresCRD,
                              const = c(total),
                              entropy = "ET", method = "DS")
GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

# calibration <- GECal::GEcalib(~ 0 + . + g(d_S), dweight = d_S, data = acresCRD,
#                               const = c(total, NA),
#                               entropy = "CE", method = "GEC")
# GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate


calibration <- GECal::GEcalib(~ 0 + . + g(d_S), dweight = d_S, data = acresCRD,
                              const = c(total, NA),
                              entropy = "HD", method = "GEC")
GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

# calibration <- GECal::GEcalib(~ 0 + . + g(d_S), dweight = d_S, data = acresCRD,
#                               const = c(total, NA),
#                               entropy = "EL", method = "GEC", K_alpha = "log")
# GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate


calibration <- GECal::GEcalib(~ 0 + ., dweight = d_S, data = acresCRD,
                              const = total,
                              entropy = "HD", method = "GEC0")
GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

# calibration <- GECal::GEcalib(~ 0 + ., dweight = d_S, data = acresCRD,
#                               const = total,
#                               entropy = "EL", method = "GEC0")
# GECal::estimate(pesticideusage ~ 1, calibration = calibration, pimat = pimat)$estimate

Try the GECal package in your browser

Any scripts or data that you put into this service are public.

GECal documentation built on Aug. 8, 2025, 6:37 p.m.