Nothing
#' Time series plot
#'
#' @description Plots time series of covariates, case counts, or incidence rates.
#'
#' @param data Data frame containing equally spaced (daily, weekly, monthly)
#' covariate or disease case observations for one or multiple locations.
#' @param var Name of the column identifying the variable to be plotted.
#' @param time Name of the variable that identifies the temporal dimension
#' of the data frame. Its values must be in date format ("yyyy-mm-dd")
#' representing the day of observation for daily data, the first day of the
#' week for weekly, or the first day of the month for monthly observations.
#' @param type Character that specifies the type of variable in `var`.
#' Possible values include 'cov' (covariate, default), 'counts' (case counts),
#' and 'inc' (case incidence). If `type='inc'`, `pop` is required.
#' @param pop Character identifying the variable name for population. Only needed
#' if `type='inc'`.
#' @param pt Numerical only used for `type='inc'`. It represents the scale of the
#' person-time (default 100,000) for incidence rates.
#' @param area Name of variable that identifies the different locations
#' (e.g., areal units) for which a time series is available.
#' @param aggregate_space Name of variable used to define spatial aggregation groups.
#' @param aggregate_time Temporal scale used to perform
#' temporal aggregation. Options are: "week" (ISO 8601), "month", "year".
#' @param aggregate_space_fun Character indicating the function to be used
#' in the aggregation over space for `type="cov"`. Options are "mean" (default),
#' "median", "sum". For case counts and incidence, "sum" is always applied.
#' @param aggregate_time_fun Character indicating the function to be used
#' in the aggregation over time for `type="cov"`. Options are "mean" (default),
#' "median", "sum". For case counts and incidence, "sum" is always applied.
#' @param facet If TRUE a separate time series for each space unit is plotted in
#' different facets.
#' @param highlight ID of the `area` to be highlighted. Using this option will
#' only color the selected spatial unit and set all the rest to grey.
#' @param transform Character, defaults to "identity" (i.e., no transformation).
#' Transforms the y-axis for better visualization. Useful options include
#' "log10p1" `log10(x+1)` useful for case counts and incidence with 0s, or
#' any of the in-built ggplot2 options such as "log10" `log10(x)`, "log1p" `log(x+1)`,
#' and "sqrt" `sqrt(x)` (check all possible options using `?scale_y_continuous`).
#' @param title Optional title of the plot.
#' @param var_label Character with a custom name for the case or covariate variable.
#' @param legend Character with a custom name for the legend.
#' @param ylab Label for the y-axis.
#' @param xlab Label for the x-axis.
#' @param free_y_scale Logical, default FALSE. Allows different scales in the
#' y_axis when facets are used.
#' @param palette GHR, RColorBrewer or colorspace palette (e.g. "Purp").
#' Single R colors in `colors()` or hex codes can be used for single time series
#' or facets. Use "-" before the palette name (e.g., "-Reds") to reverse it.
#' Defaults to a dark green when `area` is NULL, when `facet` is TRUE or when
#' `highlight` is used (i.e. single time series), otherwise defaults to the
#' "IDE2" palette.
#' @return A ggplot2 time series plot.
#' @seealso [plot_timeseries2] for dual-axis time series plots.
#' @export
#'
#' @examples
#' # Load data
#' data("dengue_MS")
#'
#' # Plotting a covariate, all areas in a single graph
#' plot_timeseries(dengue_MS,
#' var = "tmin",
#' time = "date",
#' type = "cov",
#' area = "micro_code",
#' title = "Minimun Temperature")
#'
#' # Plotting a covariate with space aggregation and different facets
#' plot_timeseries(dengue_MS,
#' var = "tmin",
#' time = "date",
#' type = "cov",
#' area = "micro_code",
#' aggregate_space = "meso_code",
#' aggregate_space_fun = "mean",
#' facet = TRUE,
#' var_label= "Minimum Temperature",
#' palette = "violetred")
#'
#' # Plotting counts, highlight a single area
#' plot_timeseries(dengue_MS,
#' var = "dengue_cases",
#' time = "date",
#' type = "counts",
#' pop = "population",
#' area = "micro_code",
#' title= "Dengue cases",
#' highlight = "50001")
#'
#' # Plot disease counts (log scale) with temporal and spatial aggregation
#' plot_timeseries(dengue_MS,
#' var = "dengue_cases",
#' time = "date",
#' type = "counts",
#' area = "micro_code",
#' aggregate_space = "meso_code",
#' aggregate_time = "year",
#' title = "Yearly Cases",
#' transform = "log10")
#'
#' # Plot incidence for 1,000 people with a Brewer palette and log y axis
#' plot_timeseries(dengue_MS,
#' var = "dengue_cases",
#' time = "date",
#' type = "inc",
#' pop = "population",
#' area = "micro_code",
#' pt = 1000,
#' transform = "log10p1")
plot_timeseries<- function(data,
var,
time,
type = "cov",
pop = NULL,
pt = 100000,
area = NULL,
aggregate_space = NULL,
aggregate_time = NULL,
aggregate_space_fun = "mean",
aggregate_time_fun = "mean",
facet = FALSE,
highlight = NULL,
transform = "identity",
title = NULL,
var_label = NULL,
legend = NULL,
ylab = NULL,
xlab = NULL,
free_y_scale = FALSE,
palette = NULL) {
# Input checks ----
# Check data exists and is a data.frame
if (missing(data)) {
stop("Error: Missing required argument 'data'")
} else if (!is.data.frame(data)) {
stop("'data' should be a data.frame")
}
# Check if numeric 'var' exists in data
if (missing(var)) {
stop("Error: Missing required argument 'var'")
} else if (is.null(data[[var]])) {
stop("No column of the data matches the 'var' argument")
}else if (is.numeric(data[[var]]) == FALSE) {
stop("'var' should be numeric")
}else{
.check_na(var, data)
}
# Check time exists, is in the data.frame and is in date format
if (missing(time)) {
stop("Error: Missing required argument 'time'")
} else if (is.null(data[[time]])) {
stop("'time' not found in the data")
} else if(any(is.na(.ymd_strict(data[[time]])))){
stop("'Date' should be in 'yyyy-mm-dd' format")
}
# Check that 'type' is valid
if (!type %in% c("cov","counts", "inc")) {
stop("type must be either 'cov', 'counts' or 'inc'")
}
# Check if 'area' exists in data
if (!is.null(area) && is.null(data[[area]])) {
stop("No column of the data matches the 'area' argument")
}
# Check that 'aggregate_space' is valid if specified
if (!is.null(aggregate_space) && is.null(data[[aggregate_space]])) {
stop("No column of the data match the 'aggregate_space' argument")
}
# Check that if 'aggregate_space' is valid area is also specified
if (!is.null(aggregate_space) && is.null(area)) {
stop("No 'area' argument provided")
}
# Check that 'aggregate_space_fun is one of the following functions
# (sum , mean , median ) if specified.
if (!is.null(aggregate_space) && !aggregate_space_fun %in% c(
"sum", "mean", "median"
)) {
stop("aggregate_space_fun can be 'sum', 'mean' 'median'")
} else if(!missing(aggregate_space_fun) && type != "cov"){
warning(paste0("'aggregate_space_fun' for case counts and incidence rates ",
"is predefined and cannot be modified."))
}
# Check that 'aggregate_time' is valid if specified
if (!is.null(aggregate_time) && !(aggregate_time %in% c(
"week", "month", "year"
))) {
stop("'aggregate_time' can be 'week','month',year'")
}
# Check that 'aggregate_time_fun is one of the following functions
# (sum , mean , median) if specified.
if (!is.null(aggregate_time) && !aggregate_time_fun %in% c(
"sum", "mean", "median"
)) {
stop("aggregate_time_fun can be 'sum', 'mean', 'median'")
}else if(!missing(aggregate_time_fun) && type != "cov"){
warning(paste0("'aggregate_time_fun' for case counts and incidence rates ",
"is predefined and cannot be modified."))
}
# Check that only one between facet and highlight is specified
if (facet == TRUE && !is.null(highlight)) {
stop("'facet' and 'highlight' cannot be specified together")
}
# Create legend label
if (is.null (legend)){
legend<- "Area"} else {
legend<- legend
}
# Check for missing values in 'time'
if (!is.null(time)) {
.check_na(time, data, error = TRUE)
}
# Check for missing values in 'area' if specified
if (!is.null(area)) {
.check_na(area, data, error = TRUE)
}
# Check requriements and missing for 'pop' if specified
if(type=="inc"){
if (!is.null(pop)) {
if (is.null(data[[pop]])) {
stop("No column of the data matches the 'pop' argument")
}else{
.check_na(pop, data)
}
}else{
stop("'pop' required if type = 'inc'")
}
# Just fill for cov and counts since it is not used
}else if (type %in% c("cov", "counts") & is.null(pop)) {
pop <- "pop"
data$pop <- rep(NA, length(data[[var]]))
}
# Check that the transform is valid
val_trans <- c("log10p1",
"asn", "atanh", "boxcox", "date", "exp", "hms", "identity",
"log", "log10", "log1p", "log2", "logit", "modulus",
"probability", "probit", "pseudo_log", "reciprocal", "reverse",
"sqrt", "time")
if(!transform %in% val_trans){
stop("Invalid transform.")
}else if(transform == "log10p1" & type == "cov"){
stop("Transform log10p1 is only available for case counts and incidence rates.")
}
# Default palette
if(is.null(palette)){
palette <- ifelse(is.null(area)|isTRUE(facet)|!is.null(highlight),
"#168c81", "IDE2")
}
# Option A: single area, no aggregation ----
# 'area' is not specified and 'aggregation' is not required
# In this option data should be a single time series
if (is.null(area) && is.null(aggregate_space) && is.null(aggregate_time)) {
# Check for duplicated dates and consecutive time points
.check_consecutive(data, time)
# Prepare data for plotting
data <- data |>
dplyr::select(
time = {{ time }},
cases = {{ var }},
pop = {{ pop }}
) |>
dplyr::mutate(time = as.Date(time),
inc = (.data$cases / pop) * pt)
if(type == "cov"){
data$var <- data$cases
}
if(isTRUE(facet)){
warning("Multiple facets not possible for a single time series")
}
}
# Option B multiple areas, no aggregation ----
# 'area' is specified and 'aggregation' is not required (Multiple time series)
else if (!is.null(area) && is.null(aggregate_space) && is.null(aggregate_time)) {
# Check for duplicated dates and consecutive time points
.check_consecutive(data, time, area)
# Warning too many areas
if (length(unique(data[[area]])) > 15) {
warning(paste("More than 15 time series detected.",
"Try 'highlight' or 'aggregate_space'?"
))
}
# Prepare data for plotting
data <- data |>
dplyr::select(
time = {{ time }},
cases = {{ var }},
pop = {{ pop }},
area = {{ area }}
) |>
dplyr::mutate(
time = as.Date(time),
area = as.character(area),
inc = ((.data$cases / pop) * pt))
if(type == "cov"){
data$var <- data$cases
}
}
# Option C: aggregation ----
else if (!is.null(aggregate_space) || !is.null(aggregate_time)) {
# Check for duplicated dates and consecutive time points
.check_consecutive(data, time, area)
## Option C.1: covariate ----
if (type=="cov") {
# Aggregate
data <- aggregate_cov(data,
var = var,
time = time,
area = area,
aggregate_time = aggregate_time,
aggregate_space = aggregate_space,
aggregate_space_fun = aggregate_space_fun,
aggregate_time_fun = aggregate_time_fun)
}
# Option C.2: Counts or inc ----
else if (type %in% c("counts","inc")) {
# Aggregate
data <- aggregate_cases(data,
cases = var,
pop = pop,
time = time,
area = area,
aggregate_time = aggregate_time,
aggregate_space = aggregate_space,
pt = pt)
}
}
# Prepare plotting variable ----
if (type == "inc"){
data$plot_var <- data$inc
}else if(type == "counts"){
data$plot_var <- data$cases
}else if (type == "cov") {
data$plot_var <- data$var
}
# Plotting ----
# Create plotting variables
if (!is.null(aggregate_time)) {
if (aggregate_time == "week") {
data$time <- as.Date(paste(data$time, "1", sep = "-"), format = "%Y-%W-%u")
} else if (aggregate_time == "month") {
data$time <- as.Date(paste(data$time, "01", sep = "-"), format = "%Y-%m-%d")
} else if (aggregate_time == "year") {
data$time <- as.Date(paste(data$time, "01", "01", sep = "-"), format = "%Y-%m-%d")
}
}
# Default axis labels
if(is.null(xlab)){xlab <- "Time"}
if(is.null(ylab)){
if(!is.null(var_label)){
ylab <- var_label
}else{
if(type == "cov"){
ylab <- var
}else if(type == "counts"){
ylab <- "Case counts"
} else if(type == "inc"){
if(is.null(aggregate_time) & !is.null(area)){
time_interval <- .get_time_interval(data = data,
time = "time",
area = "area")
} else if(is.null(aggregate_time) & is.null(area)){
time_interval <- .get_time_interval(data = data,
time = "time")
}else {
time_interval <- aggregate_time
}
ylab <- paste0("Incidence (", format(pt, big.mark = ",", scientific = FALSE),
" person-", time_interval, ")")
}
}
}
# Base graph
out <- ggplot2::ggplot(data, ggplot2::aes(x = time,
y= .data$plot_var,
color = area)) +
ggplot2::geom_line() +
ggplot2::theme_bw() +
ggplot2::ylab(ylab) + ggplot2::xlab(xlab) +
ggplot2::theme(
plot.title = ggplot2::element_text(hjust = 0.5),
axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, vjust=0.5))
# Add title if not NULL
if(!is.null(title)){
out <- out + ggplot2::ggtitle(title)
}
# Apply transformation
if(transform == "log10p1"){
out <- out + ggplot2::scale_y_continuous(transform = .log10p1_trans,
breaks = .log10_breaks_like(data$plot_var),
labels = .log10_breaks_like(data$plot_var))
}else{
out <- out + ggplot2::scale_y_continuous(transform = transform)
}
# Customize color for single time series plot (inc facet==TRUE and highlight)
if (!is.null(palette)){
my_palette <- GHR_palette(palette, 3)(3)
single_color <- my_palette[3]
}
# Customize plot for single time series and facet==FALSE
if (is.null(data$area) | length(unique(data$area)) == 1) {
# Message for a single time series and color ramp
if(length(unique(my_palette))>1){
message(paste0("A color ramp was selected for a single time series. ",
"Please select a single color to have more control."))
}
out$layers[[1]] <- NULL # substitute geom_line
out <- out +
ggplot2::geom_line(color = single_color) +
ggplot2::theme(legend.position = "none")
}else if(length(unique(data$area)) >= 1 & !isTRUE(facet)) {
# Customize plot for many areas - Adjust legend columns dynamically
legend_cols <- ifelse(length(unique(data[["area"]])) > 15, 2, 1)
out <- out +
ggplot2::guides(color = ggplot2::guide_legend(ncol = legend_cols))
}
# Customize time x axis labels for long time series
nyears <- length(unique(format(as.Date(data$time), "%Y"))) # number of years
# Adjust breaks dynamically: fewer labels for larger datasets
if (nyears > 2){
if (facet == TRUE){
break_interval <- ifelse(nyears > 50, "5 years",
ifelse(nyears > 10, "2 years",
"1 year"))
}else{
break_interval <- ifelse(nyears > 100, "5 years",
ifelse(nyears > 50, "2 years",
"1 year"))
}
out<- out +
ggplot2::scale_x_date(date_breaks = break_interval,
date_labels = "%Y",
expand = expansion(mult = 0.02))
}
# Customize plot if facet == TRUE
if (isTRUE(facet) && (!is.null(area) || !is.null(aggregate_space) || (free_y_scale ==TRUE))) {
# Message for a single time series and color ramp
if(length(unique(my_palette))>1){
message(paste0("A color ramp was selected for a single time series. ",
"Please select a single color to have more control."))
}
out$layers[[1]] <- NULL # substitute geom_line
out <- out +
ggplot2::geom_line(color = single_color) +
ggplot2::facet_wrap(~ area) +
ggplot2::guides(color = "none")
}
# Customize plot if highlight is specified
if (!is.null(highlight) && (!is.null(area) || !is.null(aggregate_space))) {
# Message for a single time series and color ramp
if(length(unique(my_palette))>1){
message(paste0("A color ramp was selected for highlight. ",
"Please select a single color to have more control."))
}
colors <- c(rep("grey80", 2000))
out <- out + ggplot2::scale_color_manual(values = colors) +
ggplot2::geom_line(
data = out$data[out$data$area == highlight, ],
colour = single_color
) + ggplot2::theme(legend.position = "none")
}
# Customize colors if Multiple time series are detected and facet = FALSE
# and no highlights has been specified
if (facet == FALSE && is.null(highlight)){
if (length(unique(data[["time"]])) != nrow(data)) {
narea <- length(unique(out$data$area))
my_palette <- GHR_palette(palette, narea)(narea)
out <- out + ggplot2::scale_color_manual(values = my_palette,
name = legend)
}
}
# Apply free y-axis scaling if specified
if (free_y_scale == TRUE && (!is.null(area)) && facet == TRUE) {
out <- out + ggplot2::facet_wrap(~ area, scales = "free_y")
}
# return the final plot
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.