Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, results = 'hold', warning=F, cache=F, #dev = 'pdf', message=F, fig.width=5, fig.height=5, tidy.opts=list(width.cutoff=75), tidy=FALSE ) old <- options(scipen = 1, digits = 4)
library(GPFDA) require(MASS) # packages required for visualisation: require(interp) require(fields)
We simulate $10$ independent realisations (surfaces) from a zero-mean GP with a Matern $(\nu=3/2)$ covariance function. Each observed surface has a sample size of $30 \times 30 = 900$ points on $[0,1]^2$.
set.seed(123) nrep <- 10 n1 <- 30 n2 <- 30 n <- n1*n2 input1 <- seq(0,1,len=n1) input2 <- seq(0,1,len=n2) input <- as.matrix(expand.grid(input1=input1, input2=input2)) hp <- list('matern.v'=log(2),'matern.w'=c(log(20), log(25)),'vv'=log(0.2)) nu <- 1.5 Sigma <- cov.matern(hyper = hp, input = input, nu = nu) + diag(exp(hp$vv), n) Y <- t(mvrnorm(n=nrep, mu=rep(0,n), Sigma=Sigma))
We now split the dataset into training and test sets, leaving about 80\% of the observations for the test set.
idx <- expand.grid(1:n1, 1:n2) n1test <- floor(n1*0.8) n2test <- floor(n2*0.8) idx1 <- sort(sample(1:n1, n1test)) idx2 <- sort(sample(1:n2, n2test)) whichTest <- idx[,1]%in%idx1 & idx[,2]%in%idx2 inputTest <- input[whichTest, ] Ytest <- Y[whichTest, ] inputTrain <- input[!whichTest, ] Ytrain <- Y[!whichTest, ]
Estimation of the GPR model is done by:
fit <- gpr(input=inputTrain, response=Ytrain, Cov='matern', trace=4, useGradient=T, iter.max=50, nu=nu, nInitCandidates=50)
The hyperparameter estimates are:
sapply(fit$hyper, exp)
Predictions for the test set can then be found:
pred <- gprPredict(train=fit, inputNew=inputTest, noiseFreePred=T)
zlim <- range(c(pred$pred.mean, Ytest)) plotImage(response = Ytest, input = inputTest, realisation = 1, n1 = n1test, n2 = n2test, zlim = zlim, main = "observed") plotImage(response = pred$pred.mean, input = inputTest, realisation = 1, n1 = n1test, n2 = n2test, zlim = zlim, main = "prediction")
options(old)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.