covMat | R Documentation |
Evaluates one of the following covariance functions at input vectors t and t':
Powered exponential
Rational quadratic
Matern
Linear
cov.pow.ex(hyper, input, inputNew = NULL, gamma = 2)
cov.rat.qu(hyper, input, inputNew = NULL)
cov.matern(hyper, input, inputNew = NULL, nu)
cov.linear(hyper, input, inputNew = NULL)
hyper |
The hyperparameters. It must be a list with certain names. See details. |
input |
The covariate t. It must be either a matrix, where each column represents a covariate, or a vector if there is only one covariate. |
inputNew |
The covariate t'. It also must be a vector or a matrix. If NULL (default), 'inputNew' will be set to be equal to ‘input’ and the function will return a squared, symmetric covariance matrix. |
gamma |
Power parameter used in powered exponential kernel function. It must be 0<gamma<=2. Default to 2, which gives the squared exponential covariance function. |
nu |
Smoothness parameter of the Matern class. It must be a positive value. |
The names for the hyperparameters should be:
"pow.ex.v" and "pow.ex.w" (powered exponential);
"rat.qu.v", "rat.qu.w" and "rat.qu.a" (rational quadratic);
"matern.v" and "matern.w" (Matern);
"linear.i" and "linear.a" (linear);
"vv" (Gaussian white noise).
A covariance matrix
Shi, J. Q., and Choi, T. (2011), “Gaussian Process Regression Analysis for Functional input”, CRC Press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.