Nothing
# row.bern.conv: This function Compute a convolution of Bernoullis for each row of
# a Bernoulli success probability matrix (part of the prob.hits function).
row.bern.conv=function(P, # matrix of lesion hit probabilities, rows for genes, columns for lesion types
max.x=NULL) # Maximum number of subjects or maximum number of hits
{
m=nrow(P)
n=ncol(P)
if (is.null(max.x))
max.x=(ncol(P))
Pr=matrix(0,m,max.x+1)
Pr[,1]=1
for (i in 1:n)
{
P1=Pr*P[,i]
P0=Pr*(1-P[,i])
Pr0=P0
Pr1=cbind(0,P1)
Pr1[,max.x+1]=Pr1[,max.x+1]+Pr1[,max.x+2]
Pr=Pr0+Pr1[,-(max.x+2)]
}
rs.Pr=rowSums(Pr)
Pr=Pr/rs.Pr
return(Pr)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.