inst/shiny/server.r

shinyServer(
  function(input, output, session) {
    #
    # Data part ------------------------------------------
    output$data_import <- renderUI({
      # if(input$empirical == "empirical") {
      if(TRUE){
        fluidRow(
          column(4,
                 fileInput("setups", "Choose csv or dat file for Setup",
                           multiple = FALSE, accept = c("csv", "dat")),

                 checkboxInput("headery", "Variable Names", F),
                 textInput("missing","Missing",value = "-99"),

                 textInput("chovar","Choose variables (type the column numbers)"),
                 actionButton("import", "IMPORT"),
                 div(
                   checkboxInput("test_data", "Import Test Data", F),
                   style = "font-size: 10px !important; padding-top: 0px;
                   text-align:right;"
                 )
          ),

          column(8,
                 tabsetPanel(
                   # verbatimTextOutput("gen_data")
                   tabPanel("Imported data",DTOutput("gen_data"))
                 ))
        )
      } else {
        fluidRow(
          column(2,
                 #          numericInput(inputId = "npeople", label = "Number of people",
                 #                       value = 300, min = 100, max = 2000, step = 1),
                 #          numericInput(inputId = "nitem",label = "Number of items",
                 #                       value = 10, min = 4, max = 50, step = 1),
                 #          numericInput(inputId = "ncate",label = "Number of categories",
                 #                       value = 3, min = 2, max = 5, step = 1),
                 #          numericInput(inputId = "nfac",label = "Number of factors (not yet)",
                 #                       value = 1, min = 1, max = 3, step = 1),
                 #

                 actionButton("import", "Import data")),
          #
          column(10,
                 downloadButton("sim_data_down", "Download"),
                 tabsetPanel(
                   tabPanel("Item parameters",DTOutput("ipar")),
                   tabPanel("Individual FS",DTOutput("indi_fs")),
                   tabPanel("Generated data",DTOutput("gen_data"))
                 )
          )
        )
      }
    })

    # imprt_data <- reactiveValues()
    observeEvent(input$import, {

      # if(input$empirical == "empirical"){
      if(input$test_data == F){
        # if(input$headery == "Yes") {
        #   headery == T
        # } else {
        #   headery == F
        # }
        orddata <- fread(input$setups$datapath, header = input$headery)

        # orddata <- fread(input$setups$datapath)
        # if(existsFunction("imprt_data")) {
        #
        #   picked <- paste(which(names(orddata) %in% imprt_data()$varname), collapse = ",")
        # } else {
        picked <- paste0("1-", ncol(orddata))
        # }
        updateTextInput(session, "chovar", value = picked)
      }
    })

    imprt_data <- eventReactive(input$import, {
      if(input$test_data == F){
        # if(input$empirical == "empirical") {
        mis_val <- input$missing
        chovar <- input$chovar

        selected_items <- eval(parse(text = paste0("c(",str_replace_all(chovar, "-", ":"),")")))

        if(mis_val != "NA") {
          orddata <- fread(input$setups$datapath) %>% mutate_all(~na_if(.,mis_val))
        } else {
          orddata <- fread(input$setups$datapath)
        }


        orddata <- data.frame(orddata)[, selected_items]

        eta <- data.frame(x = "not given")
        ipar <- data.frame(x = "not given")

        list(orddata = orddata, varname = names(orddata), eta = eta, ipar = ipar)

      } else {
        npeople <- 300 # input$npeople
        nitem   <- 5  # input$nitem
        ncate   <- 4   # input$ncate
        nfac    <- 1 # input$nfac

        ipar <- genIRTpar(nitem, ncat = ncate, nfac)
        ipar <- round(ipar, 3)
        eta <- genTheta(npeople, nfac)
        eta <- round(eta, 3)
        orddata <- genData(eta, ipar)

        list(ipar=ipar, eta=eta, orddata=orddata, varname = names(orddata))
      }
    })

    output$sim_data_down <- downloadHandler(
      filename = function() {
        paste("simulated_data", ".csv", sep = "")
      },
      content = function(file) {
        utils::write.csv(imprt_data()$orddata, file, row.names = F)
      }
    )

    output$ipar     <- renderDT({imprt_data()$ipar})
    output$indi_fs  <- renderDT({imprt_data()$eta})
    output$gen_data <- renderDT({imprt_data()$orddata})

    # Analysis part -----------------------------------------------------------
    output$what_syn <- renderUI({
      nfac    <- 1 # input$nfac

      orddata <- imprt_data()$orddata
      lav.model <- genLavSyn(orddata, nfac)

      if(!input$cus_syn) {
        textAreaInput("syntax", "Syntax",width = '100%',height = '600px',value=lav.model)
      } else {

        column(12,
               prettyRadioButtons("mplus", label = "Mplus?",
                                  choices = c("mplus", "lavaan"),
                                  selected = "lavaan",
                                  inline = T, bigger = TRUE),
               textAreaInput("syntax", "Syntax",width = '100%',height = '600px')
        )
      }
    })

    ## run analysis -----------------------------------------------------------
    final <- reactiveValues()
    observeEvent(input$grmrun, {
      nfac    <- 1 # input$nfac
      estimator <- input$estimator
      orddata <- imprt_data()$orddata

      if(input$cus_syn) {
        lav.model <- input$syntax

        if(input$mplus == "mplus") {

          lav.model <- lavaan::mplus2lavaan.modelSyntax(strsplit(lav.model, "\n")[[1]])
          lav.model <- str_replace(lav.model, "start\\(1\\)", "NA")
        }
      } else {
        lav.model <- genLavSyn(orddata, nfac)
      }

      final$res <- runGRM(dat = orddata, lav.syntax = lav.model, estimator = estimator)
      final$fit.dt <- extract_fit(final$res)
      final$est.dt <- extract_est(final$res)
      final$grmest.dt <- final$res$grm.par


      output$freq_table <- render_gt({ # renderDT({

        freqtable <- apply(orddata, 2, table)
        cate_name <- rownames(freqtable)
        freqtable <- data.frame(freqtable)

        freqtable %>% mutate(category = cate_name) %>%
          dplyr::select(category, dplyr::everything())

      })

      output$result0 <-render_gt({# renderDT({
        # fit.dt <- extract_fit(final$res)
        fit.dt <- final$fit.dt

        # datatable(fit.dt, rownames= FALSE)
        fittable <- fit.dt

        if(any(str_detect(fittable[[1]], "SABIC"))) {
          gt_out <- fittable %>%
            gt() %>%
            tab_header(
              title = md("**MODEL FIT INFORMATION**")
            ) %>%
            tab_row_group(
              label = md("**Information Criteria**"),
              rows = c(5:7)
            ) %>%
            tab_row_group(
              label = md("**Chi-Square Test of Model Fit**"),
              rows = c(2:4)
            ) %>%
            tab_row_group(
              label = md("**Loglikelihood**"),
              rows = 1
            )

        } else {
          gt_out <- fittable %>%
            gt() %>%
            tab_header(
              title = md("**MODEL FIT INFORMATION**")
            ) %>%
            tab_row_group(
              label = md("**SRMR (Standardized Root Mean Square Residual)**"),
              rows = c(10)
            ) %>%
            tab_row_group(
              label = md("**RMSE**"),
              rows = c(6:9)
            ) %>%
            tab_row_group(
              label = md("**CFI/TLI**"),
              rows = 4:5
            ) %>%
            tab_row_group(
              label = md("**Chi-Square Test of Model Fit**"),
              rows = c(1:3)
            )
        }

        gt_out %>%
          opt_all_caps() %>%
          #Use the Chivo font
          #Note the great 'google_font' function in 'gt' that removes the need to pre-load fonts
          opt_table_font(
            font = list(
              google_font("Chivo"),
              default_fonts()
            )
          ) %>%
          tab_style(
            locations = cells_column_labels(columns = gt::everything()),
            style     = list(
              #Give a thick border below
              cell_borders(sides = "bottom", weight = px(3)),
              #Make text bold
              cell_text(weight = "bold")
            )
          ) %>%
          tab_options(row_group.background.color = "orange")

      })

      output$result1_fl <- render_gt({ #renderDT({
        est_results <- final$est.dt %>%
          mutate_if(is.numeric, ~ round(., 3)) %>%
          filter(str_detect(op, "=~"))
        # datatable(., rownames= FALSE)

        # est_results <- extract_est(a1) %>%
        #   mutate_if(is.numeric, ~ round(., 3))

        fl <- str_which(est_results$op, "=~")
        thre <- str_which(est_results$rhs, "^t")

        est_results %>%
          gt() %>%
          opt_all_caps() %>%
          #Use the Chivo font
          #Note the great 'google_font' function in 'gt' that removes the need to pre-load fonts
          opt_table_font(
            font = list(
              google_font("Chivo"),
              default_fonts()
            )
          ) %>%
          tab_style(
            locations = cells_column_labels(columns = gt::everything()),
            style     = list(
              #Give a thick border below
              cell_borders(sides = "bottom", weight = px(3)),
              #Make text bold
              cell_text(weight = "bold")
            )
          ) %>%
          tab_header(
            title = md("**MODEL RESULTS**")
          ) %>%
          tab_row_group(
            label = md("**Item Slope**"),
            rows = c(fl)
          ) %>%
          tab_options(row_group.background.color = "orange")
      })


      output$result1_thre <- render_gt({ #renderDT({
        est_results <- final$est.dt %>%
          mutate_if(is.numeric, ~ round(., 3)) %>%
          filter(str_detect(rhs, "^t"))
        # datatable(., rownames= FALSE)

        # est_results <- extract_est(a1) %>%
        #   mutate_if(is.numeric, ~ round(., 3))

        fl <- str_which(est_results$op, "=~")
        thre <- str_which(est_results$rhs, "^t")

        est_results %>%
          gt() %>%
          opt_all_caps() %>%
          #Use the Chivo font
          #Note the great 'google_font' function in 'gt' that removes the need to pre-load fonts
          opt_table_font(
            font = list(
              google_font("Chivo"),
              default_fonts()
            )
          ) %>%
          tab_style(
            locations = cells_column_labels(columns = gt::everything()),
            style     = list(
              #Give a thick border below
              cell_borders(sides = "bottom", weight = px(3)),
              #Make text bold
              cell_text(weight = "bold")
            )
          ) %>%
          tab_header(
            title = md("**MODEL RESULTS**")
          ) %>%
          tab_row_group(
            label = md("**Thresholds**"),
            rows = c(thre)
          ) %>%
          tab_options(row_group.background.color = "orange")
      })


      output$result2 <- render_gt({  #renderDT({

        varname <- final$est.dt %>% filter(str_detect(op, "=~")) %>% pull(rhs)

        # if(!is.character(final$res$grm.par))
        out_gt <- final$res$grm.par %>% data.frame() %>%
          mutate_if(is.numeric, ~ round(.x,3)) %>%
          mutate(indicator = varname) %>%
          dplyr::select(indicator, dplyr::everything())

        out_gt %>%
          gt() %>%
          tab_header(
            title = md("**GRM PARAMETERS**")
          ) %>%
          tab_style(
            locations = cells_column_labels(columns = gt::everything()),
            style     = list(
              #Give a thick border below
              cell_borders(sides = "bottom", weight = px(3)),
              #Make text bold
              cell_text(weight = "bold")
            )
          ) %>%
          opt_all_caps() %>%
          #Use the Chivo font
          #Note the great 'google_font' function in 'gt' that removes the need to pre-load fonts
          opt_table_font(
            font = list(
              google_font("Chivo"),
              default_fonts()
            )
          ) %>%
          tab_options(row_group.background.color = "orange")
      })


      ### downloading data -------------------------------------------
      output$rdsreport <- downloadHandler(
        filename = function() {
          paste("Report_",Sys.Date(), ".rds", sep = "")
        },

        content = function(file) {
          shiny::withProgress(
            message = paste0("Downloading", " the document"),
            value = 0,
            {
              incProgress(1/10);Sys.sleep(1);incProgress(5/10)
              outlist <- list()
              outlist$fit <- final$fit.dt
              outlist$est <- final$est.dt
              outlist$grmest <- final$grmest.dt

              saveRDS(outlist, file)

              Sys.sleep(1);incProgress(4/10);Sys.sleep(1)
            }
          )
        }
      )

      output$report <- downloadHandler(
        filename = function() {
          # paste("Report_",Sys.Date(), ".docx", sep = "")
          paste("Report_",Sys.Date(), ".xlsx", sep = "")
        },

        content = function(file) {
          shiny::withProgress(
            message = paste0("Downloading", " the document"),
            value = 0,
            {
              incProgress(1/10);Sys.sleep(1);incProgress(5/10)

              # file_docx <- tempfile(fileext = ".docx")
              # word_out3(
              #   filename = file_docx,
              #   reportTables = final)
              # file.rename( from = file_docx, to = file )

              file_excel <- tempfile(fileext = ".xlsx")
              file_xlxs <- excel_out3(
                filename = file_excel,
                reportTables = final)

              saveWorkbook(file_xlxs, file=file, overwrite = T)

              Sys.sleep(1);incProgress(4/10);Sys.sleep(1)
            }
          )
        }
      )



    })

    # Plot part -----------------------------------------------------------

    observeEvent(input$grmrun, {

      nfac    <- 1 # input$nfac

      output$plotinfo <- renderUI({

        if(nfac != 1) {

          item_name <- names(imprt_data()$orddata)
          fluidPage(
            fluidRow(

              p("For now, not working with more than 2 factors")
            ),
            fluidRow(

              column(2,
                     pickerInput(
                       inputId = "itemchoice",
                       label = "Choose items",
                       choices = item_name,
                       selected = item_name[1:2],
                       multiple = TRUE
                     )
              ),
              column(2,
                     sliderTextInput(
                       inputId = "thetarange",
                       label = "Theta range:",
                       choices = -6:6,
                       selected = c(-5, 5)
                     )

              ),
              column(2,
                     sliderTextInput(
                       inputId = "pickcolor",
                       label = "Pick colours:",
                       choices = LETTERS[1:8],
                       selected = "D"
                     )
              ),

              column(2,
                     numericInput(
                       "linesize",
                       "Line size",
                       value = 1,
                       min = 1,
                       max = 10,
                       step = 1
                     )
              ),
              column(2,
                     numericInput(
                       "basesize",
                       "Plot text size",
                       value = 16,
                       min = 5,
                       max = 30,
                       step = 1
                     )
              ),
              column(1,
                     actionButton("plotrun", "Make plots")
              )
            )
          )
        } else {
          item_name <- names(imprt_data()$orddata)

          fluidRow(

            column(2,
                   pickerInput(
                     inputId = "itemchoice",
                     label = "Choose items",
                     choices = item_name,
                     selected = item_name[1:2],
                     multiple = TRUE
                   )
            ),
            column(2,
                   sliderTextInput(
                     inputId = "thetarange",
                     label = "Theta range:",
                     choices = -6:6,
                     selected = c(-5, 5)
                   )

            ),
            column(2,
                   sliderTextInput(
                     inputId = "pickcolor",
                     label = "Pick colours:",
                     choices = LETTERS[1:8],
                     selected = "D"
                   )
            ),

            column(2,
                   numericInput(
                     "linesize",
                     "Line size",
                     value = 1,
                     min = 1,
                     max = 10,
                     step = 1
                   )
            ),
            column(2,
                   numericInput(
                     "basesize",
                     "Plot text size",
                     value = 16,
                     min = 5,
                     max = 30,
                     step = 1
                   )
            ),
            column(1,
                   actionButton("plotrun", "Make plots")
            )
          )

        }

      })
    })
    observeEvent(input$plotrun, {

      basesize <- as.numeric(input$basesize)
      itemchoice <- input$itemchoice
      thetarange <- input$thetarange
      pickcolor <- input$pickcolor
      linesize <- input$linesize
      blabel <- input$blabel

      theta_range <- seq(thetarange[1], thetarange[2], .1)

      itemchoice <- which(imprt_data()$varname %in% itemchoice)

      res     <- final$res
      grm.par <- res$grm.par
      # fs_scores <- calFS(res)

      # output$p_test <- renderPrint({
      #
      #         itemchoice <- input$itemchoice
      #
      #         extract_numeric(itemchoice)

      # })

      output$p_icc <- renderPlot({

        p <-
          ICCplot(
            res,
            selected_item = itemchoice,
            theta = theta_range,
            plot.occ = FALSE,
            base_size = basesize,
            line_size = linesize,
            cal_option = pickcolor
          )
        p
      })

      output$p_probp <- renderPlot({
        p <-
          ICCplot(
            res,
            selected_item = itemchoice,
            theta = theta_range,
            plot.occ = T,
            base_size = basesize,
            line_size = linesize,
            cal_option = pickcolor,
            addlabel = blabel
          )
        p
      })


      output$p_exs <- renderPlot({
        p <-
          ESplot(
            res,
            selected_item = itemchoice,
            theta = theta_range,
            base_size = basesize,
            line_size = linesize,
            cal_option = pickcolor
          )
        p

      })

      output$p_info <- renderPlot({
        p <-
          infoPlot(
            res,
            selected_item = itemchoice,
            theta = theta_range,
            type = "icc",
            base_size = basesize,
            line_size = linesize,
            cal_option = pickcolor
          )
        p

      })


      output$p_tinfo <- renderPlot({
        p <-
          infoPlot(
            res,
            selected_item = itemchoice,
            theta = theta_range,
            type = "tcc",
            base_size = basesize,
            line_size = linesize,
            cal_option = pickcolor
          )
        p

      })

      output$p_hist <- renderPlot({
        p <-
          FSplot(res,
                 type = "histogram",
                 hist_bins = 20,
                 base_size = basesize)
        p

      })

      output$p_den <- renderPlot({
        p <-
          FSplot(res,
                 type = "density",
                 hist_bins = 30,
                 base_size = basesize)
        p

      })
    })




  }##################  Shiny Server last line   ############################
)

Try the GRShiny package in your browser

Any scripts or data that you put into this service are public.

GRShiny documentation built on May 4, 2023, 1:07 a.m.