Nothing
bw.gwss.average<- function (data, summary.locat, vars, kernel = "bisquare", adaptive = FALSE, p = 2, theta = 0, longlat = F, dMat)
{
if (is(data, "Spatial"))
{
p4s <- proj4string(data)
dp.locat <- coordinates(data)
}
else if (is(data, "data.frame") && (!missing(dMat)))
data <- data
else
stop("Given data must be a Spatial*DataFrame or data.frame object")
if (missing(summary.locat))
{
sp.given <- FALSE
summary.locat <- data
sp.locat <- coordinates(summary.locat)
}
else
{
sp.given <- T
if (is(summary.locat, "Spatial"))
sp.locat <- coordinates(summary.locat)
else
{
warning("Output loactions are not packed in a Spatial object,and it has to be a two-column numeric vector")
summary.locat <- sp.locat
}
}
data <- as(data, "data.frame")
dp.n <- nrow(data)
sp.n <- nrow(sp.locat)
if (missing(dMat))
DM.given <- F
else {
DM.given <- T
dim.dMat <- dim(dMat)
if (dim.dMat[1] != dp.n || dim.dMat[2] != sp.n)
stop("Dimensions of dMat are not correct")
}
if (missing(vars))
stop("Variables input error")
if (missing(dMat)) {
DM.given <- F
if (dp.n + dp.n <= 10000) {
dMat <- gw.dist(dp.locat = dp.locat, rp.locat = dp.locat,
p = p, theta = theta, longlat = longlat)
DM.given <- T
}
}
else {
DM.given <- T
dim.dMat <- dim(dMat)
if (dim.dMat[1] != dp.n || dim.dMat[2] != dp.n)
stop("Dimensions of dMat are not correct")
}
if (adaptive) {
upper <- dp.n
lower <- 20
}
else {
if (DM.given) {
upper <- range(dMat)[2]
lower <- upper/5000
}
else {
dMat <- NULL
if (p == 2) {
b.box <- bbox(dp.locat)
upper <- sqrt((b.box[1, 2] - b.box[1, 1])^2 +
(b.box[2, 2] - b.box[2, 1])^2)
lower <- upper/5000
}
else {
upper <- 0
for (i in 1:dp.n) {
dist.vi <- gw.dist(dp.locat = dp.locat, focus = i,
p = p, theta = theta, longlat = longlat)
upper <- max(upper, range(dist.vi)[2])
}
lower <- upper/5000
}
}
}
col.nm <- colnames(data)
var.idx <- match(vars, col.nm)[!is.na(match(vars, col.nm))]
if (length(var.idx) == 0)
stop("Variables input doesn't match with data")
X <- data[, var.idx]
X <- as.matrix(X)
colnames(X)<-vars
var.n <- length(vars)
bws<-matrix(numeric(2*var.n),nrow=2)
rownames(bws)<-c('Local Mean bw','Local Median bw')
colnames(bws) <- colnames(X)
for(k in 1:var.n)
{
bws[1,k] <- gold(gw.mean.cv, lower, upper, adapt.bw = adaptive,
X[,k], kernel, adaptive, dp.locat, p, theta, longlat, dMat)
bws[2,k] <- gold(gw.median.cv, lower, upper, adapt.bw = adaptive,
X[,k], kernel, adaptive, dp.locat, p, theta, longlat, dMat)
}
bws
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.