Description Usage Arguments Details Value Author(s) References See Also Examples
Score test for association between a trait and genetic polymorphism, in samples of related individuals
1 2 |
h2object |
An object returned by |
data |
An object of |
snpsubset |
Index, character or logical vector with subset of SNPs to run analysis on.
If missing, all SNPs from |
idsubset |
Index, character or logical vector with subset of IDs to run analysis on.
If missing, all people from |
strata |
Stratification variable. If provieded, scores are computed within strata and then added up. |
times |
If more then one, the number of replicas to be used in derivation of empirical genome-wide significance. NOTE: The structure of the data is not exchangable, therefore do not use times > 1 unless you are really sure you understand what you are doing! |
quiet |
do not print warning messages |
bcast |
If the argument times > 1, progress is reported once in bcast replicas |
clambda |
If inflation facot Lambda is estimated as lower then one, this parameter controls if the original P1df (clambda=TRUE) to be reported in Pc1df, or the original 1df statistics is to be multiplied onto this "deflation" factor (clambda=FALSE). If a numeric value is provided, it is used as a correction factor. |
propPs |
proportion of non-corrected P-values used to estimate the inflation factor Lambda,
passed directly to the |
Score test is performed using the formula
\frac{((G-E[G]) V^{-1} residualY)^2}{(G-E[G]) V^{-1} (G-E[G])}
where G is the vector of genotypes (coded 0, 1, 2) and E[G] is
a vector of (strata-specific) mean genotypic values; V^{-1} is the
InvSigma and residualY are residuals from the trait analysis
with polygenic
procedure.
This test is similar to that implemented by Abecasis et al. (see reference).
Object of class scan.gwaa-class
; only 1 d.f. test is
implemented currently.
Yurii Aulchenko
Chen WM, Abecasis GR. Family-based association tests for genome-wide association scans. Am J Hum Genet. 2007 Nov;81(5):913-26.
grammar
,
qtscore
,
egscore
,
plot.scan.gwaa
,
scan.gwaa-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # ge03d2 is rather bad data set to demonstrate,
# because this is a population-based study
require(GenABEL.data)
data(ge03d2.clean)
#take half for speed
ge03d2.clean <- ge03d2.clean[1:100,]
gkin <- ibs(ge03d2.clean,w="freq")
h2ht <- polygenic(height ~ sex + age,kin=gkin,ge03d2.clean)
h2ht$est
mm <- mmscore(h2ht,data=ge03d2.clean)
# compute grammar
gr <- qtscore(h2ht$pgres,data=ge03d2.clean,clam=FALSE)
#compute GC
gc <- qtscore(height ~ sex + age,data=ge03d2.clean)
#compare
plot(mm,df="Pc1df",cex=0.5)
add.plot(gc,df="Pc1df",col="red")
add.plot(gr,df="Pc1df",col="lightgreen",cex=1.1)
# can see that mmscore and grammar are quite the same... in contrast to GC
|
Loading required package: MASS
Loading required package: GenABEL.data
LM estimates of fixed parameters:
desmat(Intercept) desmatsex desmatage
0.007548131 1.147885901 -0.013061168
iteration = 0
Step:
[1] 0 0 0 0 0
Parameter:
[1] 0.007548131 1.147885901 -0.013061168 0.300000000 0.648103376
Function Value
[1] 55.66681
Gradient:
[1] -0.7970343 -0.9002342 -9.4983582 2.6684209 1.9871480
iteration = 1
Step:
[1] 7.486420e-07 8.455760e-07 8.921661e-06 -2.506406e-06 -1.866497e-06
Parameter:
[1] 0.00754888 1.14788675 -0.01305225 0.29999749 0.64810151
Function Value
[1] 55.66676
Gradient:
[1] -0.5938191 -0.7822453 1.4375897 2.6679804 1.9867985
iteration = 2
Step:
[1] 6.411024e-07 8.260613e-07 -1.420976e-07 -2.767826e-06 -2.061155e-06
Parameter:
[1] 0.007549521 1.147887573 -0.013052388 0.299994726 0.648099449
Function Value
[1] 55.66674
Gradient:
[1] -0.5965473 -0.7837615 1.2894200 2.6679508 1.9863417
iteration = 3
Step:
[1] 0.0008347452 0.0010744655 -0.0001030452 -0.0035973377 -0.0026786097
Parameter:
[1] 0.008384266 1.148962038 -0.013155433 0.296397388 0.645420839
Function Value
[1] 55.65488
Gradient:
[1] -2.285253 -1.676401 -91.362070 2.630593 1.381695
iteration = 4
Step:
[1] 1.322173e-03 1.700842e-03 -9.103538e-05 -5.692279e-03 -4.237766e-03
Parameter:
[1] 0.009706439 1.150662880 -0.013246469 0.290705109 0.641183073
Function Value
[1] 55.64038
Gradient:
[1] -3.3182490 -2.1363395 -149.8012648 2.5667794 0.4018119
iteration = 5
Step:
[1] 0.0026569518 0.0034166055 -0.0001017411 -0.0114327127 -0.0085092693
Parameter:
[1] 0.01236339 1.15407949 -0.01334821 0.27927240 0.63267380
Function Value
[1] 55.61714
Gradient:
[1] -3.551523 -1.986481 -168.151625 2.415280 -1.638642
iteration = 6
Step:
[1] 1.790706e-03 2.301376e-03 -2.328209e-07 -7.700483e-03 -5.727558e-03
Parameter:
[1] 0.01415410 1.15638086 -0.01334844 0.27157191 0.62694625
Function Value
[1] 55.60394
Gradient:
[1] -2.1668397 -0.9869864 -97.4901598 2.2932996 -3.0656584
iteration = 7
Step:
[1] 3.200402e-04 4.099595e-04 5.321961e-05 -1.372949e-03 -1.015214e-03
Parameter:
[1] 0.01447414 1.15679082 -0.01329522 0.27019896 0.62593103
Function Value
[1] 55.6002
Gradient:
[1] -0.7185304 -0.1113436 -20.1306468 2.2667329 -3.3206498
iteration = 8
Step:
[1] -1.718455e-04 -2.218167e-04 2.187891e-05 7.397489e-04 5.564165e-04
Parameter:
[1] 0.01430229 1.15656900 -0.01327334 0.27093871 0.62648745
Function Value
[1] 55.59994
Gradient:
[1] -0.35805603 0.07873818 -0.32076012 2.27692768 -3.17700826
iteration = 9
Step:
[1] -4.370591e-05 -5.678491e-05 2.534223e-06 1.873171e-04 1.446267e-04
Parameter:
[1] 0.01425859 1.15651222 -0.01327081 0.27112603 0.62663208
Function Value
[1] 55.59991
Gradient:
[1] -0.33482824 0.08733884 1.02753420 2.27960852 -3.13980565
iteration = 10
Step:
[1] -8.239764e-05 -1.084886e-04 4.557309e-06 3.510771e-04 2.842010e-04
Parameter:
[1] 0.01417619 1.15640373 -0.01326625 0.27147711 0.62691628
Function Value
[1] 55.59986
Gradient:
[1] -0.2963599 0.1003585 3.2826027 2.2845664 -3.0667127
iteration = 11
Step:
[1] -1.125355e-04 -1.519010e-04 6.387447e-06 4.741788e-04 4.181545e-04
Parameter:
[1] 0.01406365 1.15625183 -0.01325987 0.27195129 0.62733443
Function Value
[1] 55.59972
Gradient:
[1] -0.2410546 0.1194671 6.5118233 2.2910729 -2.9591862
iteration = 12
Step:
[1] -1.694592e-04 -2.394344e-04 1.018578e-05 6.988233e-04 7.156662e-04
Parameter:
[1] 0.01389419 1.15601240 -0.01324968 0.27265011 0.62805010
Function Value
[1] 55.59936
Gradient:
[1] -0.1476295 0.1533271 11.9219868 2.3001185 -2.7752158
iteration = 13
Step:
[1] -2.161574e-04 -3.363418e-04 1.464905e-05 8.474317e-04 1.161466e-03
Parameter:
[1] 0.01367804 1.15567605 -0.01323503 0.27349754 0.62921156
Function Value
[1] 55.59845
Gradient:
[1] 0.001112454 0.211353186 20.419473287 2.309517370 -2.476852991
iteration = 14
Step:
[1] -2.088932e-04 -4.252463e-04 1.953791e-05 6.764875e-04 1.927817e-03
Parameter:
[1] 0.01346914 1.15525081 -0.01321549 0.27417403 0.63113938
Function Value
[1] 55.5961
Gradient:
[1] 0.2404947 0.3153472 33.7968048 2.3118226 -1.9823419
iteration = 15
Step:
[1] 3.369304e-05 -3.592887e-04 1.987934e-05 -7.174267e-04 3.127760e-03
Parameter:
[1] 0.01350284 1.15489152 -0.01319561 0.27345660 0.63426714
Function Value
[1] 55.59023
Gradient:
[1] 0.6095535 0.5025264 53.6679393 2.2831436 -1.1823416
iteration = 16
Step:
[1] 9.517540e-04 2.484439e-04 2.110652e-06 -5.483508e-03 4.790299e-03
Parameter:
[1] 0.01445459 1.15513996 -0.01319350 0.26797309 0.63905744
Function Value
[1] 55.57644
Gradient:
[1] 1.12710099 0.83201768 79.66540174 2.16314918 0.03686374
iteration = 17
Step:
[1] 3.276493e-03 2.152326e-03 -6.180635e-05 -1.703339e-02 6.065806e-03
Parameter:
[1] 0.01773108 1.15729229 -0.01325531 0.25093971 0.64512324
Function Value
[1] 55.54862
Gradient:
[1] 1.680746 1.348176 102.947639 1.841034 1.573250
iteration = 18
Step:
[1] 0.0067836239 0.0054898838 -0.0001817005 -0.0337960053 0.0042469873
Parameter:
[1] 0.02451471 1.16278217 -0.01343701 0.21714370 0.64937023
Function Value
[1] 55.50832
Gradient:
[1] 1.903909 1.949905 101.515793 1.243283 2.667115
iteration = 19
Step:
[1] 0.0074591773 0.0068599564 -0.0002434808 -0.0359910848 -0.0019551940
Parameter:
[1] 0.03197388 1.16964213 -0.01368049 0.18115262 0.64741504
Function Value
[1] 55.47725
Gradient:
[1] 1.4808321 2.2839731 63.6782829 0.6107532 2.2529371
iteration = 20
Step:
[1] 0.0028906328 0.0032049549 -0.0001284514 -0.0131711102 -0.0051624919
Parameter:
[1] 0.03486452 1.17284708 -0.01380894 0.16798151 0.64225255
Function Value
[1] 55.46738
Gradient:
[1] 0.7967717 2.1623817 20.4515645 0.3685095 1.0282386
iteration = 21
Step:
[1] -2.784684e-04 7.698159e-05 -1.399989e-05 1.816475e-03 -2.620404e-03
Parameter:
[1] 0.03458605 1.17292407 -0.01382294 0.16979798 0.63963214
Function Value
[1] 55.46605
Gradient:
[1] 0.4379634 1.9641385 1.3430362 0.3986591 0.3972916
iteration = 22
Step:
[1] -3.270487e-04 -2.478646e-04 6.965651e-06 1.653009e-03 -3.538327e-04
Parameter:
[1] 0.03425900 1.17267620 -0.01381598 0.17145099 0.63927831
Function Value
[1] 55.46599
Gradient:
[1] 0.3932840 1.9176692 -0.4484865 0.4286262 0.3127178
iteration = 23
Step:
[1] -4.784184e-05 -4.278825e-05 1.572686e-06 2.324103e-04 -1.091682e-05
Parameter:
[1] 0.03421116 1.17263341 -0.01381440 0.17168340 0.63926739
Function Value
[1] 55.46598
Gradient:
[1] 0.3960711 1.9156881 -0.2012953 0.4328866 0.3102883
iteration = 24
Step:
[1] -1.406266e-04 -1.321138e-04 4.869115e-06 6.735665e-04 -2.933668e-05
Parameter:
[1] 0.03407053 1.17250130 -0.01380953 0.17235697 0.63923806
Function Value
[1] 55.46596
Gradient:
[1] 0.4076997 1.9113822 0.7141092 0.4452625 0.3038118
iteration = 25
Step:
[1] -1.815508e-04 -1.840437e-04 6.479897e-06 8.490960e-04 -3.921052e-05
Parameter:
[1] 0.03388898 1.17231726 -0.01380305 0.17320606 0.63919885
Function Value
[1] 55.46591
Gradient:
[1] 0.4236033 1.9053465 1.9495757 0.4609188 0.2951103
iteration = 26
Step:
[1] -3.225709e-04 -3.642812e-04 1.191606e-05 1.451990e-03 -7.162228e-05
Parameter:
[1] 0.03356641 1.17195297 -0.01379114 0.17465805 0.63912722
Function Value
[1] 55.46578
Gradient:
[1] 0.4517300 1.8917948 4.1526063 0.4878503 0.2791383
iteration = 27
Step:
[1] -5.038233e-04 -6.636859e-04 1.958371e-05 2.123960e-03 -1.157051e-04
Parameter:
[1] 0.03306259 1.17128929 -0.01377155 0.17678201 0.63901152
Function Value
[1] 55.46544
Gradient:
[1] 0.4943032 1.8628450 7.5580409 0.5276727 0.2531846
iteration = 28
Step:
[1] -8.114959e-04 -1.314954e-03 3.404951e-05 3.047291e-03 -1.959979e-04
Parameter:
[1] 0.03225109 1.16997433 -0.01373750 0.17982930 0.63881552
Function Value
[1] 55.46459
Gradient:
[1] 0.5588927 1.7957351 12.9263366 0.5860254 0.2089235
iteration = 29
Step:
[1] -1.217899e-03 -2.598422e-03 5.747866e-05 3.623872e-03 -3.192569e-04
Parameter:
[1] 0.03103319 1.16737591 -0.01368003 0.18345317 0.63849626
Function Value
[1] 55.46253
Gradient:
[1] 0.6454119 1.6428073 20.6703392 0.6589926 0.1363922
iteration = 30
Step:
[1] -1.577059e-03 -4.933296e-03 9.050034e-05 2.309101e-03 -4.794377e-04
Parameter:
[1] 0.02945613 1.16244262 -0.01358953 0.18576227 0.63801683
Function Value
[1] 55.45794
Gradient:
[1] 0.73090743 1.31355169 29.89105404 0.71690174 0.02728338
iteration = 31
Step:
[1] -0.0012317179 -0.0077383457 0.0001106893 -0.0041004734 -0.0005461381
Parameter:
[1] 0.02822441 1.15470427 -0.01347884 0.18166180 0.63747069
Function Value
[1] 55.44984
Gradient:
[1] 0.73299201 0.73221144 35.14431806 0.67059315 -0.09679972
iteration = 32
Step:
[1] 5.698054e-04 -7.445375e-03 6.254506e-05 -1.485675e-02 -2.392295e-04
Parameter:
[1] 0.02879422 1.14725889 -0.01341629 0.16680505 0.63723146
Function Value
[1] 55.44095
Gradient:
[1] 0.55641337 0.08627239 27.60362614 0.42842279 -0.15516839
iteration = 33
Step:
[1] 2.159426e-03 -1.776175e-03 -3.622574e-05 -1.612610e-02 3.043072e-04
Parameter:
[1] 0.03095365 1.14548272 -0.01345252 0.15067895 0.63753577
Function Value
[1] 55.43664
Gradient:
[1] 0.30839294 -0.16767397 11.28189554 0.14077256 -0.09577193
iteration = 34
Step:
[1] 1.329174e-03 1.693987e-03 -5.186797e-05 -5.691026e-03 3.438891e-04
Parameter:
[1] 0.03228282 1.14717671 -0.01350439 0.14498793 0.63787965
Function Value
[1] 55.43592
Gradient:
[1] 0.18565946 -0.10103569 1.74549687 0.03155287 -0.01987298
iteration = 35
Step:
[1] 2.406597e-04 8.303781e-04 -1.505240e-05 -2.357704e-04 8.198753e-05
Parameter:
[1] 0.03252348 1.14800709 -0.01351944 0.14475216 0.63796164
Function Value
[1] 55.43588
Gradient:
[1] 0.166314294 -0.048618401 -0.034773834 0.024763821 -0.000102375
iteration = 36
Step:
[1] 2.176200e-06 9.103215e-05 -1.007243e-06 1.235977e-04 -6.863360e-07
Parameter:
[1] 0.03252566 1.14809812 -0.01352044 0.14487575 0.63796096
Function Value
[1] 55.43588
Gradient:
[1] 1.671713e-01 -4.137046e-02 -2.856078e-02 2.674685e-02 -4.596501e-05
iteration = 37
Step:
[1] -1.453098e-06 5.199941e-06 -6.803913e-09 1.576172e-05 -1.088528e-06
Parameter:
[1] 0.03252420 1.14810332 -0.01352045 0.14489152 0.63795987
Function Value
[1] 55.43588
Gradient:
[1] 0.1675834369 -0.0407589183 -0.0060234129 0.0270183165 -0.0002847145
iteration = 38
Step:
[1] -7.018031e-06 2.132072e-05 5.795043e-09 6.557846e-05 -4.917844e-06
Parameter:
[1] 0.03251718 1.14812464 -0.01352045 0.14495709 0.63795495
Function Value
[1] 55.43588
Gradient:
[1] 0.169520021 -0.038109858 0.100900948 0.028149842 -0.001373564
iteration = 39
Step:
[1] -1.025201e-05 2.604498e-05 4.079207e-08 7.848309e-05 -6.020541e-06
Parameter:
[1] 0.03250693 1.14815068 -0.01352040 0.14503558 0.63794893
Function Value
[1] 55.43588
Gradient:
[1] 0.171911353 -0.034856335 0.234380977 0.029505991 -0.002709768
iteration = 40
Step:
[1] -2.379585e-05 4.832576e-05 1.612808e-07 1.416707e-04 -1.099602e-05
Parameter:
[1] 0.03248314 1.14819901 -0.01352024 0.14517725 0.63793793
Function Value
[1] 55.43588
Gradient:
[1] 0.176225797 -0.028884274 0.479667349 0.031960639 -0.005153083
iteration = 41
Step:
[1] -4.975047e-05 7.664985e-05 4.670112e-07 2.152422e-04 -1.693579e-05
Parameter:
[1] 0.03243339 1.14827566 -0.01351978 0.14539249 0.63792100
Function Value
[1] 55.43588
Gradient:
[1] 0.182681902 -0.019620962 0.858509395 0.035707693 -0.008920978
iteration = 42
Step:
[1] -1.155539e-04 1.304495e-04 1.336277e-06 3.422457e-04 -2.750061e-05
Parameter:
[1] 0.03231783 1.14840611 -0.01351844 0.14573474 0.63789350
Function Value
[1] 55.43587
Gradient:
[1] 0.19263973 -0.00441388 1.47517113 0.04171345 -0.01505077
iteration = 43
Step:
[1] -2.700496e-04 2.181017e-04 3.580838e-06 5.123954e-04 -4.267814e-05
Parameter:
[1] 0.03204778 1.14862421 -0.01351486 0.14624713 0.63785082
Function Value
[1] 55.43585
Gradient:
[1] 0.20670809 0.01961264 2.43536878 0.05083264 -0.02459187
iteration = 44
Step:
[1] -6.375624e-04 3.638714e-04 9.251417e-06 7.092973e-04 -6.317613e-05
Parameter:
[1] 0.03141022 1.14898808 -0.01350561 0.14695643 0.63778764
Function Value
[1] 55.43579
Gradient:
[1] 0.22388539 0.05628653 3.86427760 0.06380475 -0.03878446
iteration = 45
Step:
[1] -1.427347e-03 5.666489e-04 2.202241e-05 7.662118e-04 -7.978570e-05
Parameter:
[1] 0.02998287 1.14955473 -0.01348359 0.14772264 0.63770786
Function Value
[1] 55.43566
Gradient:
[1] 0.23598767 0.10546101 5.68621928 0.07880081 -0.05686896
iteration = 46
Step:
[1] -2.735302e-03 7.121201e-04 4.418494e-05 2.288645e-04 -6.016317e-05
Parameter:
[1] 0.02724757 1.15026685 -0.01343940 0.14795151 0.63764769
Function Value
[1] 55.43541
Gradient:
[1] 0.21945948 0.15005929 7.10202634 0.08636999 -0.07088492
iteration = 47
Step:
[1] -3.608464e-03 4.539553e-04 6.087765e-05 -1.309925e-03 4.062775e-05
Parameter:
[1] 0.02363911 1.15072081 -0.01337852 0.14664158 0.63768832
Function Value
[1] 55.43509
Gradient:
[1] 0.14641570 0.14459199 6.29046136 0.06882706 -0.06266988
iteration = 48
Step:
[1] -2.169158e-03 -2.347575e-04 3.930104e-05 -2.473445e-03 1.497573e-04
Parameter:
[1] 0.02146995 1.15048605 -0.01333922 0.14416813 0.63783808
Function Value
[1] 55.43489
Gradient:
[1] 0.04942878 0.07431887 3.02524417 0.02943145 -0.02998014
iteration = 49
Step:
[1] 5.557258e-05 -4.539996e-04 1.416156e-06 -1.461011e-03 1.104264e-04
Parameter:
[1] 0.02152552 1.15003205 -0.01333781 0.14270712 0.63794850
Function Value
[1] 55.43484
Gradient:
[1] 0.003353335 0.015154033 0.567880448 0.004341068 -0.005494222
iteration = 50
Step:
[1] 3.836532e-04 -1.617514e-04 -5.891470e-06 -2.342879e-04 2.407737e-05
Parameter:
[1] 0.02190918 1.14987030 -0.01334370 0.14247284 0.63797258
Function Value
[1] 55.43484
Gradient:
[1] -1.228557e-03 4.846942e-04 8.041553e-03 -1.853309e-04 -2.093969e-05
iteration = 51
Step:
[1] -4.062326e-04 -1.327259e-05 8.100931e-06 -1.626987e-05 1.338393e-07
Parameter:
[1] 0.02150294 1.14985702 -0.01333560 0.14245657 0.63797272
Function Value
[1] 55.43484
Gradient:
[1] 2.118476e-05 2.484121e-04 -2.034779e-02 3.547563e-04 -1.413970e-04
iteration = 52
Step:
[1] -2.230488e-05 -3.600743e-06 4.673192e-07 -2.107057e-05 7.438154e-07
Parameter:
[1] 0.02148064 1.14985342 -0.01333513 0.14243550 0.63797346
Function Value
[1] 55.43484
Gradient:
[1] -3.952927e-05 -2.804369e-05 -1.970639e-03 2.897963e-05 1.439702e-06
iteration = 53
Step:
[1] -7.615441e-08 2.402892e-08 2.612985e-09 -1.534459e-06 1.329647e-08
Parameter:
[1] 0.02148056 1.14985345 -0.01333513 0.14243396 0.63797347
Function Value
[1] 55.43484
Gradient:
[1] -9.626717e-06 -6.582133e-06 -4.536789e-04 1.316529e-06 1.798171e-06
iteration = 54
Step:
[1] 5.077235e-08 1.172134e-08 -6.731285e-10 -6.724250e-08 -5.737773e-09
Parameter:
[1] 0.02148061 1.14985346 -0.01333513 0.14243389 0.63797347
Function Value
[1] 55.43484
Gradient:
[1] -1.126423e-06 -6.620630e-07 -5.630881e-05 -4.806822e-08 2.609468e-07
iteration = 55
Parameter:
[1] 0.02148062 1.14985346 -0.01333513 0.14243390 0.63797347
Function Value
[1] 55.43484
Gradient:
[1] -3.829825e-08 -1.476881e-08 -2.150529e-06 -1.111999e-08 1.193712e-08
Successive iterates within tolerance.
Current iterate is probably solution.
difFGLS:
[1] 9.821324e-12 9.881451e-11 3.340536e-12
******************************************
*** GOOD convergence indicated by FGLS ***
******************************************
Warning message:
In polygenic(height ~ sex + age, kin = gkin, ge03d2.clean) :
some eigenvalues close/less than 1e-8, setting them to 1e-8
you can also try option llfun='polylik' instead
[1] 0.1424339
Warning message:
In mmscore(h2ht, data = ge03d2.clean) : Lambda estimated < 1, set to 1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.