Nothing
## ----setup, include=FALSE------------------------------------------------
library(GenomicTools)
library(knitr)
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(base.dir=getwd())
knitr::opts_chunk$set(echo = TRUE,
dev=c("png"))
## ----eval=FALSE----------------------------------------------------------
# install.packages("GenomicTools")
## ----eval=FALSE----------------------------------------------------------
# source("https://bioconductor.org/biocLite.R")
# biocLite("snpStats")
## ----eval=FALSE----------------------------------------------------------
# library("devtools")
# install_github("fischuu/GenomicTools")
## ---- warning=FALSE, error=FALSE,message=FALSE---------------------------
library("GenomicTools")
## ------------------------------------------------------------------------
data("annotTrack")
## ---- comment=NA---------------------------------------------------------
annotTrack
## ----eval=FALSE----------------------------------------------------------
# ensGTF <- importGTF(file="Homo_sapiens.GRCh38.85.gtf.gz")
## ------------------------------------------------------------------------
data("genotData")
## ---- comment=NA---------------------------------------------------------
genotData
## ----eval=FALSE----------------------------------------------------------
# ownGenotypes <- importPED(file="myGenotypes.ped", snps="myGenotypes.map")
## ----eval=FALSE----------------------------------------------------------
# ownGenotypes <- importVCF(file="myGenotypes.vcf")
## ------------------------------------------------------------------------
data("geneEXP")
## ---- comment=NA---------------------------------------------------------
geneEXP[1:5,1:4]
## ------------------------------------------------------------------------
# Make the example data available
data("annotTrack") # Standard gtf file, imported with importGTF
data("geneEXP") # Matrix with gene expression
data("genotData") # An imported Ped/Map filepair, using importPED
# data("genotDataVCF") # An imported vcf file, using importVCF (too large for Cran)
## ------------------------------------------------------------------------
# Transform gtf to bed format (not necessarily required)
annot.bed <- gtfToBed(annotTrack)
## ----eval=FALSE----------------------------------------------------------
#
# # cis-eQTL
# ###############################################
#
# # Most basic cis-eQTL runs:
# EQTL1 <- eQTL(gex=geneEXP[,1:10], xAnnot = annotTrack, geno= genotData)
#
# # Same run, if gtf has been transformed to bed previously
# EQTL1.1 <- eQTL(gex=geneEXP[,1:10], xAnnot = annot.bed, geno= genotData)
#
# # Same run, when the genotype data wasn't loaded and should be loaded
# # here instead
# EQTL1.2 <- eQTL(gex=geneEXP[,1:10], xAnnot = annotTrack,
# + geno= file.path("Datasets","genotypes.ped"))
#
# # Full set of genes, this time filtered with column names
# EQTL2 <- eQTL(gex=geneEXP, xAnnot = annot.bed, geno= genotData,
# + which = colnames(geneEXP)[1:20])
#
# # Single vector of gene expression values, underlying gene is specified
# # in the which option
# EQTL3 <- eQTL(gex=as.vector(geneEXP[,1]), xAnnot = annot.bed,
# + geno= genotData, which="ENSG00000223972")
#
# # Same call, but instead of the name the row number in the gtf/bed
# # file is provided
# EQTL3.2 <- eQTL(gex=geneEXP[,1], xAnnot = annot.bed, geno= genotData,
# + which=1)
#
# # The same expression values are now assigned to three different genes
# EQTL4 <- eQTL(gex=as.vector(geneEXP[,1]), xAnnot = annot.bed,
# + geno= genotData, which=1:3)
#
## ---- eval=FALSE---------------------------------------------------------
# EQTL1.vcf <- eQTL(gex=geneEXP[,1:10], xAnnot = annotTrack, geno= genotDataVCF)
#
# # Same run, if gtf has been transformed to bed previously
# EQTL1.1.vcf <- eQTL(gex=geneEXP[,1:10], xAnnot = annot.bed, geno= genotDataVCF)
#
# # Same run, when the genotype data wasn't loaded and should be loaded
# # here instead
# EQTL1.2.vcf <- eQTL(gex=geneEXP[,1:10], xAnnot = annotTrack,
# + geno= file.path("Datasets","genotypes.vcf"))
#
# # Full set of genes, this time filtered with column names
# EQTL2.vcf <- eQTL(gex=geneEXP, xAnnot = annot.bed, geno= genotDataVCF,
# + which = colnames(geneEXP)[1:20])
#
# # Single vector of gene expression values, underlying gene is specified
# # in the which option
# EQTL3.vcf <- eQTL(gex=as.vector(geneEXP[,1]), xAnnot = annot.bed,
# + geno= genotData.vcf, which="ENSG00000223972")
#
# # Same call, but instead of the name the row number in the gtf/bed
# # file is provided
# EQTL3.2.vcf <- eQTL(gex=geneEXP[,1], xAnnot = annot.bed, geno= genotDataVCF,
# + which=1)
#
# # The same expression values are now assigned to three different genes
# EQTL4.vcf <- eQTL(gex=as.vector(geneEXP[,1]), xAnnot = annot.bed,
# + geno= genotData.vcf, which=1:3)
## ----message=FALSE, eval=FALSE-------------------------------------------
# # Same call, but this time is the corresponding column not casted
# EQTL3.1 <- eQTL(gex=geneEXP[,1] , xAnnot = annot.bed, geno= genotData,
# which="ENSG00000223972")
## ----eval=FALSE----------------------------------------------------------
# # Trans-eQTL
# ######################################
#
# # Trans eQTL for the first and the last gene in our expression matrix
# EQTL5 <- eQTL(gex=geneEXP[,c(1,1000)] , xAnnot = annot.bed,
# + geno= genotData, windowSize = NULL)
#
# # Same call, this time distributed to 8 cores (ony available on
# # Linux computers)
# EQTL5 <- eQTL(gex=geneEXP[,c(1,1000)] , xAnnot = annot.bed,
# + geno= genotData, windowSize = NULL, mc=8)
## ---- eval=FALSE---------------------------------------------------------
# # Expression values from the first gene are used to test the 100st
# # gene for trans-eQTL
# EQTL6 <- eQTL(gex=as.vector(geneEXP[,1]) , xAnnot = annot.bed, geno= genotData, windowSize = NULL, which=100)
## ----fig.width=10, fig.height=10, fig.dev='png', eval=FALSE--------------
# #png(file="cisEQTL.png", width=685, height=685)
# plot(EQTL3.1)
# #dev.off()
## ---- fig.retina = NULL, fig.cap="Example for a cis-eQTL", echo=FALSE----
knitr::include_graphics("./cisEQTL.png")
## ----fig.width=10, fig.height=10, fig.dev='png', eval=FALSE--------------
# #png(file="transEQTL.png", width=685, height=685)
# plot(EQTL6)
# #dev.off()
## ---- fig.retina = NULL, fig.cap="Example for a trans-eQTL", echo=FALSE----
knitr::include_graphics("./transEQTL.png")
## ------------------------------------------------------------------------
# Make the example data available
data("phenoData")
data("genotData")
## ---- eval=FALSE---------------------------------------------------------
# qtl1 <- QTL(pheno=phenoData[,2:3], geno=genotData)
## ----eval=FALSE----------------------------------------------------------
# # The most basic approach
# qtl1 <- QTL(pheno=phenoData, geno=genotData)
#
# # Use only a named subset of phenotypes
# qtl2 <- QTL(pheno=phenoData, geno=genotData, which = c("Pheno1", "Pheno4"))
#
# # Use a numbers subset of genotypes, distributed to 3 cores
# qtl2.1 <- QTL(pheno=phenoData, geno=genotData, which = 3:4, mc=3)
#
# # Use a single phenotype only
# qtl2.2 <- QTL(pheno=phenoData, geno=genotData, which = 7)
#
# # Same thing, but filtering applied directly to the data
# qtl3 <- QTL(pheno=phenoData[,5], geno=genotData)
#
# # Also a vector input isntead of a matrix is possible
# qtl3.1 <- QTL(pheno=as.vector(phenoData[,5]), geno=genotData)
#
# # The genotype data can be loaded in runtime, without previous step
# qtl4 <- QTL(pheno=phenoData[,5], geno=file.path("Datasets","genotypes.ped"))
## ----fig.width=10, fig.height=10, fig.dev='png', eval=FALSE--------------
# # Visualize e.g. the 1st phenotype from previous runs
# # png(file="QTL1.png", width=685, height=685)
# plot(qtl1, which=1)
# # dev.off()
## ---- fig.retina = NULL, fig.cap="Example 1 for a QTL", echo=FALSE-------
knitr::include_graphics("./QTL1.png")
## ----fig.width=10, fig.height=10, fig.dev='png', eval=FALSE--------------
# # Visualize e.g. the 1st phenotype from previous runs
# # png(file="QTL2.png", width=685, height=685)
# plot(qtl1, which=1, genome = "Human68")
# # dev.off()
## ---- fig.retina = NULL, fig.cap="Example 2 for a QTL", echo=FALSE-------
knitr::include_graphics("./QTL2.png")
## ------------------------------------------------------------------------
data(mdrExample)
mdrSNP <- mdrExample[,1:20]
fit.mdr <- mdr(mdrSNP, mdrExample$Class, fold=3, top=5)
fit.mdr
fit.mdr <- mdr(mdrSNP, mdrExample$Class)
fit.mdr
## ----eval=TRUE-----------------------------------------------------------
data(mdrExample)
mdrSNP.train <- mdrExample[1:350,1:20]
mdrSNP.test <- mdrExample[351:400,1:20]
fit.mdr <- mdr(mdrSNP.train, mdrExample$Class[1:350], fold=2, top=20)
ensResult <- mdrEnsemble(fit.mdr, data = mdrSNP.test)
table(ensResult, mdrExample[351:400,21])
## ----fig.width=10, fig.height=10, fig.dev='png', eval=FALSE--------------
# #png(file="./MDR.png", width=685, height=685)
# plot(fit.mdr)
# #dev.off()
## ---- fig.retina = NULL, fig.cap="Example for a MDR plot", echo=FALSE----
knitr::include_graphics("./MDR.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.