# R/TO_TM.R In GeodesiCL: Geometric Geodesy Functions

#### Documented in TO_TM

```#' To convert from Geographic coordinate to TM.
#'
#' With this function it is possible to convert from Geographic coordinate to TM using the Central meridian, Scale factor Ko, False East, False North and obtain the decimal precision that you assign.
#'
#' @param a Selection of Ellipsoid.
#' @param longlat_df Sexagesimal longitude and latitude as dataframe.
#' @param d Central meridian.
#' @param e Scale factor Ko.
#' @param f False East (FE).
#' @param g False North (FN).
#' @param digits Number of digits the seconds are \code{\link{round}ed} to. DEFAULT: 4
#'
#' @return data.frame with the data in the following order: "East", "North", "X", "Y".
#' @export
#'
#' @note create data frame of epsg codes by epsg <- rgdal::make_EPSG()
#'
#' @references https://github.com/OSGeo/PROJ & https://github.com/cran/rgdal
#'
#' @examples
#' # Test data
#' CM <- -69.00000
#' SC_FACTOR_Ko <- 0.99960
#' FE <- 500000.00000
#' FN <- 10000000.00000
#'
#' # Point name
#' Pto <- "St1"
#'
#' # Longitude
#' g <- -71
#' m <- 18
#' s <- 44.86475
#'
#' # Value in sexagesimal
#' sexa_long <- sexagesimal(g, m, s)
#'
#' # Latitude
#' g1 <- -33
#' m1 <- 12
#' s1 <- 27.11457
#'
#' # Value in sexagesimal
#' sexa_lat <- sexagesimal(g1, m1, s1)
#'
#' # Longitude and Latitude as data.frame
#' longlat_df <- as.data.frame(cbind(Pto,sexa_long,sexa_lat))
#'
#' # ELLIPSOIDAL HEIGHT (h)
#' h <- 31.885
#'
#' # To know the ellipsoids and the order open the Ellipsoids in the package and look for it number
#' Ellip <- Ellipsoids
#' #View(Ellip)
#'
#' # We choose the number 47 which is WGS84
#' value <- TO_TM(a = 47, longlat_df, CM, SC_FACTOR_Ko, FE, FN, digits = 4)
#' print(value)
TO_TM <- function(a = 47, longlat_df, d, e, f, g, digits = 4){
b <- as.numeric(longlat_df[,2])
c <- as.numeric(longlat_df[,3])
N <- as.numeric(Ellipsoids[a,3])/sqrt(1-as.numeric(Ellipsoids[a,7])*sin(c*pi/180)^2)
DELTA_LAMBA <- as.numeric((b-d)*3600)
a1 <- as.numeric(Ellipsoids[a,15])*c
b1 <- as.numeric(Ellipsoids[a,16])*sin(2*(c*pi/180))
c1 <- as.numeric(Ellipsoids[a,17])*sin(4*(c*pi/180))
d1 <- as.numeric(Ellipsoids[a,18])*sin(6*(c*pi/180))
e1 <- as.numeric(Ellipsoids[a,19])*sin(8*(c*pi/180))
f1 <- as.numeric(Ellipsoids[a,20])*sin(10*(c*pi/180))
Be <- as.numeric(a1-b1+c1-d1+e1-f1)
t <- as.numeric(tan(c*pi/180))
n <- as.numeric(sqrt(as.numeric(Ellipsoids[a,8]))*cos(c*pi/180))
N1 <- as.numeric(1/2*DELTA_LAMBA^2*N*sin(c*pi/180)*cos(c*pi/180)*(Sin_1^2))
N2 <- as.numeric(1/24*DELTA_LAMBA^4*N*sin(c*pi/180)*cos(c*pi/180)^3*(Sin_1^4)*(5-t^2+9*n^2+4*n^4))
N3 <- as.numeric(1/720*DELTA_LAMBA^6*N*sin(c*pi/180)*cos(c*pi/180)^5*(Sin_1^6)*(61-58*t^2+720*n^2-350*t^2*n^2))
Y <- as.numeric(e*(Be+N1+N2+N3))
North <- as.numeric(Y+g)
E1 <- as.numeric(DELTA_LAMBA*N*cos(c*pi/180)*Sin_1)
E2 <- as.numeric(1/6*DELTA_LAMBA^3*N*cos(c*pi/180)^3*Sin_1^3*(1-t^2+n^2))
E3 <- as.numeric(1/120*DELTA_LAMBA^5*N*cos(c*pi/180)^5*Sin_1^5*(5-18*t^2+t^4+14*n^2-58*t^2*n^2))
X <- as.numeric(e*(E1+E2+E3))
East <- as.numeric(X+f)
values <- tibble::as_tibble(as.data.frame(cbind(round(East, digits), round(North, digits), round(X, digits), round(Y, digits))))
names(values) <- c("East", "North", "X", "Y")
return(values)
}
```

## Try the GeodesiCL package in your browser

Any scripts or data that you put into this service are public.

GeodesiCL documentation built on May 25, 2021, 5:10 p.m.