Nothing
set.seed(1) knitr::opts_chunk$set(fig.width = 6, fig.height = 4) if("package:GillespieSSA" %in% search()) detach("package:GillespieSSA", unload=TRUE)
The SIRS epidemiological metapopulation model as defined by @PinedaKrch2008.
Define parameters
library(GillespieSSA2) sim_name <- "SIRS metapopulation model" patchPopSize <- 500 # Patch size U <- 20 # Number of patches final_time <- 50 # Final time params <- c( beta = 0.001, # Transmission rate gamma = 0.1, # Recovery rate rho = 0.005, # Loss of immunity rate epsilon = 0.01, # Proportion inter-patch transmissions N = patchPopSize # Patch population size (constant) )
Create the named initial state vector for the U-patch system. The structure of
initial_state
is as follows (assuming a patchsize of 500 individuals),
initial_state <- c( S1 = 499, I1 = 1, S2 = 500, I2 = 0, S3 = 500, I3 = 0, ... S20 = 500, I20 = 0 )
initial_state <- c(patchPopSize - 1, 1, rep(c(patchPopSize, 0), U - 1)) names(initial_state) <- unlist(lapply(seq_len(U), function(i) paste0(c("S", "I"), i)))
Define the state change matrix for a single patch
reactions <- unlist(lapply( seq_len(U), function(patch) { i <- patch j <- if (patch == 1) U else patch - 1 Si <- paste0("S", i) Ii <- paste0("I", i) Ij <- paste0("I", j) list( reaction( propensity = paste0("(1 - epsilon) * beta * ", Si, " * ", Ii), effect = setNames(c(-1, +1), c(Si, Ii)), name = paste0("intra_patch_infection_", i) ), reaction( propensity = paste0("epsilon * beta * ", Si, " * ", Ij), effect = setNames(c(-1, +1), c(Si, Ii)), name = paste0("inter_patch_infection_", i) ), reaction( propensity = paste0("gamma * ", Ii), effect = setNames(-1, Ii), name = paste0("recovery_from_infection_", i) ), reaction( propensity = paste0("rho * (N - ", Si, " - ", Ii, ")"), effect = setNames(+1, Si), name = paste0("loss_of_immunity_", i) ) ) } ), recursive = FALSE)
Run simulations with the Exact method
set.seed(1) out <- ssa( initial_state = initial_state, reactions = reactions, params = params, final_time = final_time, method = ssa_exact(), sim_name = sim_name ) plot_ssa(out)
Run simulations with the Explict tau-leap method
set.seed(1) out <- ssa( initial_state = initial_state, reactions = reactions, params = params, final_time = final_time, method = ssa_etl(), sim_name = sim_name ) plot_ssa(out)
Run simulations with the Binomial tau-leap method
set.seed(1) out <- ssa( initial_state = initial_state, reactions = reactions, params = params, final_time = final_time, method = ssa_btl(), sim_name = sim_name ) plot_ssa(out)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.