Nothing
#'
#' @title Maximum Likelihood Estimation of edge probabilities between blocks of a graph, under ERSBM
#'
#' @description `get_mle_ERSBM` obtains MLE for the probability of edges between blocks in a graph, used in calculating the goodness-of-fit test statistic for the ERSBM (Karwa et al. (2023))
#'
#' @param G an igraph object which is an undirected graph with no self loop
#' @param C a positive integer vector of size n for block assignments of each node; from 1 to K (no of blocks)
#'
#' @return A matrix of maximum likelihood estimates
#' \item{mleMatr}{a matrix containing the estimated edge probabilities between blocks in a graph}
#'
#' @importFrom igraph graph.empty
#' @importFrom igraph vcount
#' @importFrom igraph graph
#' @importFrom igraph ecount
#' @importFrom igraph graph.intersection
#' @importFrom igraph graph.difference
#' @importFrom igraph as.directed
#' @importFrom igraph is.simple
#' @importFrom igraph is.directed
#' @importFrom igraph graph.union
#' @importFrom igraph get.edges
#' @importFrom igraph get.edge.ids
#' @importFrom igraph as.undirected
#' @importFrom igraph get.edgelist
#' @importFrom igraph subgraph.edges
#' @importFrom igraph E
#' @importFrom igraph V
#' @importFrom igraph graph.complementer
#' @importFrom stats loglin
#'
#' @export
#'
#' @seealso [goftest_ERSBM()] performs the goodness-of-fit test for the ERSBM, where the MLE of the edge probabilities are required
#'
#' @examples
#' RNGkind(sample.kind = "Rounding")
#' set.seed(1729)
#'
#' # We model a network with 3 even classes
#' n1 = 2
#' n2 = 2
#' n3 = 2
#'
#' # Generating block assignments for each of the nodes
#' n = n1 + n2 + n3
#' class = rep(c(1, 2, 3), c(n1, n2, n3))
#'
#' # Generating the adjacency matrix of the network
#' # Generate the matrix of connection probabilities
#' cmat = matrix(
#' c(
#' 0.80, 0.05, 0.05,
#' 0.05, 0.80, 0.05,
#' 0.05, 0.05, 0.80
#' ),
#' ncol = 3,
#' byrow = TRUE
#' )
#' pmat = cmat / n
#'
#' # Creating the n x n adjacency matrix
#' adj <- matrix(0, n, n)
#' for (i in 2:n) {
#' for (j in 1:(i - 1)) {
#' p = pmat[class[i], class[j]] # We find the probability of connection with the weights
#' adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p
#' }
#' }
#'
#' adjsymm = adj + t(adj)
#'
#' # graph from the adjacency matrix
#' G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)
#'
#' # mle of the edge probabilities
#' get_mle_ERSBM(G, class)
#'
#' @references
#' Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic blockmodels",
#' \emph{Journal of the Royal Statistical Society Series B: Statistical Methodology},
#' \doi{https://doi.org/10.1093/jrsssb/qkad084}
get_mle_ERSBM <- function(G, C) {
# Input:
# G_current: G_obs igraph object which is an undirected graph and has no self loop
# C: numeric vector of size n of block assignment; from 1 to k
# Getting graph information
k <- length(unique(C)) # no of block
n <- length(C) # no of nodes
A <- igraph::get.adjacency(G, type = "both")
# Calculate total observed edges between block and within block
table_obs <- matrix(0, nrow = k, ncol = k)
for (i in 1:k) {
for (j in 1:k) {
table_obs[i, j] <- sum(A[C == i, C == j])
}
}
# Calculate total possible edges between and within block based on nodes information
tot_edge <- tcrossprod(as.vector(table(C))) - diag(as.vector(table(C)))
# Estimated value for q_i,j in matrix form
mle_mat <- table_obs / tot_edge
# Output:
# the estimated q_i,j matrix (k by k)
return(mle_mat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.