Nothing
APM <- function(y, rmax = 8, r0 = NULL, r = NULL, localfactor = FALSE, weight = TRUE, method = "ic", type = "IC3") {
if (is.na(match(method, c("ic", "gap")))) {
stop("invalid 'method' input")
}
M = length(y)
T = nrow(y[[1]])
Nm = sapply(y, ncol)
K = list()
Proj_Mat = list()
rhat = rep(0, M)
for (m in 1:M) {
rhat[m] = est_num(y[[m]], kmax = rmax, type = type)
K[[m]] = FA(y[[m]], r = rhat[m])$F
if(rhat[m] == 0){
Proj_Mat[[m]] = matrix(0, T, T)
} else{
Proj_Mat[[m]] = K[[m]] %*% solve(t(K[[m]]) %*% K[[m]]) %*% t(K[[m]])
}
}
W_Proj_Mat = matrix(0, T, T)
if (weight == TRUE) {
weights = Nm/sum(Nm)
for (m in 1:M) {
W_Proj_Mat = W_Proj_Mat + Proj_Mat[[m]] * weights[m]
}
} else if (weight == FALSE) {
for (m in 1:M) {
W_Proj_Mat = W_Proj_Mat + Proj_Mat[[m]]/M
}
} else if (length(weight) == M & all(weight > 0)) {
weight = weight/sum(weight)
W_Proj_Mat = W_Proj_Mat + Proj_Mat[[m]] * weight[m]
} else {
stop("invalid 'weight' input")
}
# estimate r0
eig_deco = eigen(W_Proj_Mat)
rho = eig_deco$values[1:rmax]
if (is.null(r0)) {
if (method == "gap") {
rho = c(1 - 1/sqrt(min(c(Nm, T))), rho)
rho_gap = rep(0, rmax)
for (i in 1:rmax) {
rho_gap[i] = rho[i] - rho[i + 1]
}
r0hat = which.max(rho_gap) - 1
threshold = NULL
rho = rho[-1]
} else if (method == "ic"){
rhat = rep(0, M)
K = list()
e = list()
for (m in 1:M) {
e[[m]] = y[[m]] - Proj_Mat[[m]] %*% y[[m]]
}
sigma2_e = sum(sapply(e, function(x) sum(x^2)))/(T * sum(Nm))
sigma2_y = sum(sapply(y, function(x) sum(x^2)))/(T * sum(Nm))
if(weight == TRUE){
Nmin = mean(Nm)
Nmin = min(Nm)
}else{
Nmin = min(Nm)
}
threshold = 1 - (sqrt(Nmin) + sqrt(T))/(sqrt(Nmin * T)) * log(log(sqrt(min(Nmin, T)))) * exp(sigma2_e/sigma2_y) * (1 - 1/M)
r0hat = sum(rho >= threshold)
}
} else {
threshold = NULL
r0hat = r0
}
# estimate G
if (r0hat > 0) {
Ghat = eig_deco$vectors[, 1:r0hat]
Ghat = sqrt(T) * as.matrix(Ghat)
Proj_G = Ghat %*% solve(t(Ghat) %*% Ghat) %*% t(Ghat)
loading_G = list()
for(m in 1:M){
loading_G[[m]] = 1/T*t(y[[m]]) %*% Ghat
}
} else {
Ghat = NA
Proj_G = matrix(0, T, T)
loading_G = NA
}
# estimate F
if(localfactor == FALSE){
res = list(r0hat = r0hat, rho = rho, Ghat = Ghat, loading_G = loading_G, threshold = threshold)
}else{
Fhat = list()
loading_F = list()
y_proj_G = lapply(y, function(x) x - Proj_G %*% x)
if (is.null(r)) {
rhat = rep(0, M)
for (m in 1:M) {
rhat[m] = est_num(y_proj_G[[m]], kmax = rmax - r0hat, type = type)
fit = FA(y_proj_G[[m]], r = rhat[m])
Fhat[[m]] = fit$F
loading_F[[m]] = fit$L
}
} else {
if (!(all(r%%1 == 0) && all(r >= 0))) {
stop("invalid 'r' input")
}
rhat = r
for (m in 1:M) {
fit = FA(y_proj_G[[m]], r = rhat[m])
Fhat[[m]] = fit$F
loading_F[[m]] = fit$L
}
}
# estimate e
e = list()
for(m in 1:M){
if(rhat[m] > 0){
e[[m]] = y_proj_G[[m]] - Fhat[[m]] %*% t(loading_F[[m]])
}else{
e[[m]] = y_proj_G[[m]]
}
}
res = list(r0hat = r0hat, rhat = rhat, rho = rho, Ghat = Ghat, Fhat = Fhat,
loading_G = loading_G, loading_F = loading_F, residual = e, threshold = threshold)
}
class(res) = "GFA"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.