Nothing
CCA <- function(y, rmax = 8, r0 = NULL, r = NULL, localfactor = FALSE, method = "CCD", type = "IC3") {
if (is.na(match(method, c("CCD", "MCC")))) {
stop("invalid 'method' input")
}
M = length(y)
T = nrow(y[[1]])
Nm = sapply(y, ncol)
rhat = rep(0, M)
for (m in 1:M) {
rhat[m] = est_num(y[[m]], kmax = rmax, type = "BIC3")
}
rmaxstar = max(rhat)
K = list()
for(m in 1:M){
K[[m]] = FA(y[[m]], r = rmaxstar)$F
}
lmh = array(0, dim = c(M, M, rmaxstar))
for (i in 1:(M - 1)) {
for (j in (i + 1):M) {
a = K[[i]]
b = K[[j]]
lmh[i, j, ] = eigen(solve(cov_my(a, a)) %*% cov_my(a, b) %*% solve(cov_my(b, b)) %*% cov_my(b, a))$values
}
}
rho = apply(lmh, 3, sum) * 2/(M * (M - 1))
rho = c(1, rho)
if (is.null(r0)) {
if(method == "CCD"){
CCD = rep(0, rmaxstar)
for(i in 1:rmaxstar){
CCD[i] = rho[i] - rho[i + 1]
}
r0hat = which.max(CCD) - 1
threshold = NULL
} else{
Nmin = min(Nm)
PNT = (log(Nmin) + log(T))/sqrt(Nmin*T)*log(log(Nmin*T))
sigma2_y = sum(sapply(y, function(x)sum(x^2)))/(T*sum(Nm))
f = function(y, F){
e = y - F %*% solve(t(F)%*% F)%*% t(F)%*% y
sum(e^2)
}
sigma2_e = sum(mapply(f, y, K)/(T*sum(Nm)))
threshold = 1 - exp(sigma2_e/sigma2_y)*PNT
r0hat = sum(rho > threshold) - 1
}
} else {
if (!(r0%%1 == 0) | r0 < 0) {
stop("invalid 'r0' input")
}
r0hat = r0
threshold = NULL
}
if (r0hat > 0) {
index = which.max(lmh[, , 1])
i = index%%M
j = (index - i)/M + 1
Ghat = cca_my(K[[i]], K[[j]], r0hat)$xscore
Proj_G = Ghat %*% solve(t(Ghat) %*% Ghat) %*% t(Ghat)
y_proj = lapply(y, function(x)x - Proj_G%*%x)
Fhat = list()
y_proj_F = list()
rhat = rep(0, M)
for (m in 1:M) {
rhat[m] = est_num(y_proj[[m]], kmax = rmaxstar - r0hat, type = type)
if (rhat[m] == 0) {
Fhat[[m]] = matrix(0, T, 0)
y_proj_F[[m]] = y[[m]]
} else {
Fhat[[m]] = FA(y_proj[[m]], rhat[m])$F
y_proj_F[[m]] = y[[m]] - Fhat[[m]] %*% solve(t(Fhat[[m]]) %*% Fhat[[m]]) %*% t(Fhat[[m]]) %*% y[[m]]
}
}
y_proj_F_all = do.call("cbind", y_proj_F)
Ghat = FA(y_proj_F_all, r0hat)$F
Proj_G = Ghat %*% solve(t(Ghat) %*% Ghat) %*% t(Ghat)
loading_G = list()
for(m in 1:M){
loading_G[[m]] = 1/T*t(y[[m]]) %*% Ghat
}
} else {
Ghat = NA
Proj_G = diag(0, T, T)
loading_G = NA
}
# estimate F
if(localfactor == FALSE){
res = list(r0hat = r0hat, rho = rho[-1], Ghat = Ghat, loading_G = loading_G, threshold = threshold)
}else{
Fhat = list()
loading_F = list()
y_proj_G = lapply(y, function(x) x - Proj_G %*% x)
if (is.null(r)) {
rhat = rep(0, M)
for (m in 1:M) {
rhat[m] = est_num(y_proj_G[[m]], kmax = rmaxstar - r0hat, type = type)
fit = FA(y_proj_G[[m]], r = rhat[m])
Fhat[[m]] = fit$F
loading_F[[m]] = fit$L
}
} else {
if (!(all(r%%1 == 0) && all(r >= 0))){
stop("invalid 'r' input")
}
rhat = r
for (m in 1:M) {
fit = FA(y_proj_G[[m]], r = rhat[m])
Fhat[[m]] = fit$F
loading_F[[m]] = fit$L
}
}
# estimate e
e = list()
for(m in 1:M){
if(rhat[m] > 0){
e[[m]] = y_proj_G[[m]] - Fhat[[m]] %*% t(loading_F[[m]])
}else{
e[[m]] = y_proj_G[[m]]
}
}
res = list(r0hat = r0hat, rhat = rhat, rho = rho[-1], Ghat = Ghat, Fhat = Fhat,
loading_G = loading_G, loading_F = loading_F, residual = e, threshold = threshold)
}
class(res) = "GFA"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.