Nothing
.Fixed_point_smoothing_method_two_constraints_K_SPOR_DynProg <- function(datX,datY,deg,sigma2,constraint,begin_point,end_point,nb_pt_pond,FP_nbIter=20){
#Weight of the observations
datX = unique(datX)
if(nb_pt_pond != 0){
X <- c(datX[(which(datX == datX[(datX < end_point[1]) & datX>=begin_point[1]][1])-nb_pt_pond):(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][1])-1)]
,datX[datX<end_point[1] & datX>=begin_point[1]],
datX[(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][length(datX[datX<end_point[1] & datX>=begin_point[1]])])+1):
(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][length(datX[datX<end_point[1] & datX>=begin_point[1]])])+nb_pt_pond)])
Y <- c(datY[(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][1])-nb_pt_pond):(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][1])-1)]
,datY[datX<end_point[1] & datX>=begin_point[1]],
datY[(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][length(datX[datX<end_point[1] & datX>=begin_point[1]])])+1):
(which(datX == datX[datX<end_point[1] & datX>=begin_point[1]][length(datX[datX<end_point[1] & datX>=begin_point[1]])])+nb_pt_pond)])
obs_weights1 <- 1-(1-((X[1:(2*nb_pt_pond)] - X[1])/(X[2*nb_pt_pond] - X[1]))^2)
obs_weights2 <- 1-((X[max(1,(length(X)-(2*nb_pt_pond-1))):length(X)] - X[max(1,(length(X)-(2*nb_pt_pond-1)))])/(X[length(X)] - X[max(1,(length(X)-(2*nb_pt_pond-1)))]))^2
obs_weights = c(obs_weights1,rep(1,(length(X)-length(c(obs_weights1,obs_weights2)))),obs_weights2)
}else{
X <- datX[datX < end_point[1] & datX>=begin_point[1]]
Y <- datY[datX < end_point[1] & datX>=begin_point[1]]
obs_weights <- rep(1,length(X))
}
for(p in 1:FP_nbIter){
#vector parameters estimation
M_mat <- .Jacobian_Matrix_two_constraints_K_SPOR_DynProg(X,Y,deg,sigma2,constraint,begin_point,end_point)
gammaV <- .Vector_solution_two_constraints_K_SPOR_DynProg(X,Y,deg,constraint,begin_point,end_point)
mat_param <- .Parameters_estimation_K_SPOR_DynProg(M_mat,gammaV,deg)
sigma2 <- .Variance_estimation_K_SPOR_DynProg(X,Y,deg,mat_param)
}
#Complete_log_likelihood
s <- 0
for(i in 1:(deg+1)){
s <- s + mat_param[1,i] * X^(deg+1-i)
}
wp <- obs_weights*((1/sqrt(2*pi*sigma2)) * exp( - ((Y - s)^2)/(2*sigma2)))
penalised_MLL <- -sum(log(wp[-c(1,length(wp))]))
list(mat_param,sigma2,penalised_MLL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.