View source: R/plot.IconoCorel.R
plot.IconoCorel | R Documentation |
This function plots the data as a network. It returns an invisible object that can be used with visIgraph from package visNetwork.
https://fr.wikipedia.org/wiki/Iconographie_des_corrélations
## S3 method for class 'IconoCorel'
plot(
x,
...,
show.legend.direction = "bottomright",
show.legend.strength = "topleft",
title = "Correlation iconography",
vertex.label.color = "black",
vertex.label = NULL,
vertex.color = "white",
vertex.label.cex = 1,
plot = TRUE
)
x |
The correlation matrix to show |
... |
other options of plot.igraph() |
show.legend.direction |
the position of the legend of direction; FALSE to not show it |
show.legend.strength |
the position of the legend with intensity of correlation; FALSE to not show it |
title |
the title of the plot |
vertex.label.color |
a vector with the colors of labels |
vertex.label |
a vector with the labels |
vertex.color |
a vector of colors |
vertex.label.cex |
a vector of cex |
plot |
if TRUE, the plot is shown |
plot.IconoCorel checks and corrects the dataframe to be used with IC_threshold_matrix
A igraph object
Marc Girondot marc.girondot@gmail.com
Lesty, M., 1999. Une nouvelle approche dans le choix des régresseurs de la régression multiple en présence d’interactions et de colinéarités. Revue de Modulad 22, 41-77.
Other Iconography of correlations:
IC_clean_data()
,
IC_correlation_simplify()
,
IC_threshold_matrix()
## Not run:
library("HelpersMG")
es <- structure(list(Student = c("e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8"),
Mass = c(52, 59, 55, 58, 66, 62, 63, 69),
Age = c(12, 12.5, 13, 14.5, 15.5, 16, 17, 18),
Assiduity = c(12, 9, 15, 5, 11, 15, 12, 9),
Note = c(5, 5, 9, 5, 13.5, 18, 18, 18)),
row.names = c(NA, -8L), class = "data.frame")
es
df <- IC_clean_data(es, debug = TRUE)
cor_matrix <- IC_threshold_matrix(data=df, threshold = NULL, progress=FALSE)
cor_threshold <- IC_threshold_matrix(data=df, threshold = 0.3)
par(mar=c(1,1,1,1))
set.seed(4)
library("igraph")
library("visNetwork")
kk <- plot(cor_threshold, vertex.color="red")
# it can be shown also with the visNetwork package
visIgraph(kk)
cor_threshold_Note <- IC_correlation_simplify(matrix=cor_threshold, variable="Note")
plot(cor_threshold_Note)
# You can record the position of elements and use them later
ly <- layout_nicely(kk)
plot(cor_threshold, vertex.color="red", layout=ly)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.