Description Usage Arguments See Also Examples
Computes the likelihood for observations of vectors of exceedances that belong to the maximum domain of attraction of a multivariate max-stable distribution whose spectral random vector is Gaussian, Log-normal or has a clustered copula distribution.
1  | 
data | 
 a matrix representing the data. Each column corresponds to one observation of a vector of exceedance with censored components. Note that all components must be larger or equal to one.  | 
ln | 
 logical. If   | 
... | 
 further arguments to be passed to   | 
mubz.normal,mubz.lnormal, mubz.copula.
1 2 3 4 5 6 7 8 9 10 11 12  | raw.data<-rCMS(copulas=c(copClayton,copGumbel),
               margins=c(marginLnorm,marginFrechet),
               classes=c(rep(1,4),rep(2,4)),
               params=c(0.5,1,1.5,1.7),n=50)
data<-excess.censor(raw.data)
d<-excess.l(data,params=c(0.5,1,1.5,1.7),
            category="copula",
            copulas=c(copClayton,copGumbel),
            margins=c(marginLnorm,marginFrechet),
            classes=c(rep(1,4),rep(2,4)))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.