Description Usage Arguments See Also Examples
Computes the likelihood for observations of vectors of componentwise maxima with additional information on maxima occurences. The data that are used to compute componentwise maxima must belong to the maximum domain of attraction of a multivariate max-stable distribution whose spectral random vector is Gaussian, Log-normal or has a clustered copula distribution.
1 | simultoccur.l(data,occur,ln=FALSE,...)
|
data |
a matrix representing the data. Each column corresponds to one observation of a vector of componentwise maxima. |
occur |
a matrix representing the data. Each column corresponds to one observation of a vector that gives which componentwise maxima occur simultaneously. |
ln |
logical. If |
... |
further arguments to be passed to |
mubz.normal
,mubz.lnormal
, mubz.copula
.
1 2 3 4 5 6 7 8 9 10 11 12 13 | raw.data<-rCMS(copulas=c(copClayton,copGumbel),
margins=c(marginLnorm,marginFrechet),
classes=c(rep(1,3),rep(2,3)),
params=c(0.5,1,1.5,1.7),n=20)
data<-maxblocks(raw.data,n.blocks=3)
d<-simultoccur.l(data$normalized.max,occur=data$classes.max,
params=c(0.5,1,1.5,1.7),
category="copula",
copulas=c(copClayton,copGumbel),
margins=c(marginLnorm,marginFrechet),
classes=c(rep(1,3),rep(2,3)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.