R/HEC.R

#' A HivePlotData Object of the Hair Eye Color Data Set
#'
#' This is an \code{\link{HPD}} (\code{HivePlotData} object) derived from the
#' built-in hair eye color data set (see \code{?HairEyeColor}).  It serves as a
#' test 2D data set, and the example below shows how it was built.  While every
#' data set is different and will require a different approach, the example
#' illustrates the general approach to building a hive plot from scratch,
#' step-by-step.
#'
#'
#' @name HEC
#' @docType data
#' @format The format is described in detail at \code{\link{HPD}}.
#' @keywords datasets
#' @examples
#'
#' # An example of building an HPD from scratch
#'
#' ### Step 0.  Get to know your data.
#'
#' data(HairEyeColor) # see ?HairEyeColor for background
#' df <- data.frame(HairEyeColor) # str(df) is useful
#'
#' # Frequencies of the colors can be found with:
#' eyeF <- aggregate(Freq ~ Eye, data = df, FUN = "sum")
#' hairF <- aggregate(Freq ~ Hair, data = df, FUN = "sum")
#' es <- eyeF$Freq / eyeF$Freq[4] # node sizes for eye
#' hs <- hairF$Freq / hairF$Freq[3] # node sizes for hair
#'
#' ### Step 1. Assemble a data frame of the nodes.
#'
#' # There are 32 rows in the data frame, but we are going to
#' # separate the hair color from the eye color and thus
#' # double the number of rows in the node data frame
#'
#' nodes <- data.frame(
#'   id = 1:64,
#'   lab = paste(rep(c("hair", "eye"), each = 32), 1:64, sep = "_"),
#'   axis = rep(1:2, each = 32),
#'   radius = rep(NA, 64)
#' )
#'
#' for (n in 1:32) {
#'   # assign node radius based most common colors
#'   if (df$Hair[n] == "Black") nodes$radius[n] <- 2
#'   if (df$Hair[n] == "Brown") nodes$radius[n] <- 4
#'   if (df$Hair[n] == "Red") nodes$radius[n] <- 1
#'   if (df$Hair[n] == "Blond") nodes$radius[n] <- 3
#'
#'   if (df$Eye[n] == "Brown") nodes$radius[n + 32] <- 1
#'   if (df$Eye[n] == "Blue") nodes$radius[n + 32] <- 2
#'   if (df$Eye[n] == "Hazel") nodes$radius[n + 32] <- 3
#'   if (df$Eye[n] == "Green") nodes$radius[n + 32] <- 4
#'
#'   # now do node sizes
#'   if (df$Hair[n] == "Black") nodes$size[n] <- hs[1]
#'   if (df$Hair[n] == "Brown") nodes$size[n] <- hs[2]
#'   if (df$Hair[n] == "Red") nodes$size[n] <- hs[3]
#'   if (df$Hair[n] == "Blond") nodes$size[n] <- hs[4]
#'
#'   if (df$Eye[n] == "Brown") nodes$size[n + 32] <- es[4]
#'   if (df$Eye[n] == "Blue") nodes$size[n + 32] <- es[3]
#'   if (df$Eye[n] == "Hazel") nodes$size[n + 32] <- es[2]
#'   if (df$Eye[n] == "Green") nodes$size[n + 32] <- es[1]
#' }
#'
#' nodes$color <- rep("black", 64)
#' nodes$lab <- as.character(nodes$lab) # clean up some data types
#' nodes$radius <- as.numeric(nodes$radius)
#'
#' ### Step 2. Assemble a data frame of the edges.
#'
#' edges <- data.frame( # There will be 32 edges, corresponding to the original 32 rows
#'   id1 = c(1:16, 49:64), # This will set up edges between each eye/hair pair
#'   id2 = c(33:48, 17:32), # & put the males above and the females below
#'   weight = df$Freq,
#'   color = rep(c("lightblue", "pink"), each = 16)
#' )
#'
#' edges$color <- as.character(edges$color)
#'
#' # Scale the edge weight (det'd by trial & error to emphasize differences)
#' edges$weight <- 0.25 * log(edges$weight)^2.25
#'
#' ### Step 3. Now assemble the HivePlotData (HPD) object.
#'
#' HEC <- list()
#' HEC$nodes <- nodes
#' HEC$edges <- edges
#' HEC$type <- "2D"
#' HEC$desc <- "HairEyeColor data set"
#' HEC$axis.cols <- c("grey", "grey")
#' class(HEC) <- "HivePlotData"
#'
#' ### Step 4. Check it & summarize
#'
#' chkHPD(HEC) # answer of FALSE means there are no problems
#' sumHPD(HEC)
#'
#' ### Step 5.  Plot it.
#'
#' # A minimal plot
#' plotHive(HEC, ch = 0.1, bkgnd = "white")
#' # See ?plotHive for fancier options
NULL

Try the HiveR package in your browser

Any scripts or data that you put into this service are public.

HiveR documentation built on July 1, 2020, 7:04 p.m.