gigCalcRange: Range of a Generalized Inverse Gaussian Distribution

gigCalcRangeR Documentation

Range of a Generalized Inverse Gaussian Distribution


Given the parameter vector Theta of a generalized inverse Gaussian distribution, this function determines the range outside of which the density function is negligible, to a specified tolerance. The parameterization used is the (\chi,\psi) one (see dgig). To use another parameterization, use gigChangePars.


gigCalcRange(Theta, tol = 10^(-5), density = TRUE, ...)



Value of parameter vector specifying the generalized inverse Gaussian distribution.




Logical. If TRUE, the bounds are for the density function. If FALSE, they should be for the probability distribution, but this has not yet been implemented.


Extra arguments for calls to uniroot.


The particular generalized inverse Gaussian distribution being considered is specified by the value of the parameter value Theta.

If density = TRUE, the function gives a range, outside of which the density is less than the given tolerance. Useful for plotting the density. Also used in determining break points for the separate sections over which numerical integration is used to determine the distribution function. The points are found by using uniroot on the density function.

If density = FALSE, the function returns the message: "Distribution function bounds not yet implemented".


A two-component vector giving the lower and upper ends of the range.


David Scott


J├Ârgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, Vol. 9, Springer-Verlag, New York.

See Also

dgig, gigChangePars


Theta <- c(-0.5,5,2.5)
maxDens <- dgig(gigMode(Theta), Theta)
gigRange <- gigCalcRange(Theta, tol = 10^(-3)*maxDens)
curve(dgig(x, Theta), gigRange[1], gigRange[2])
## Not run: gigCalcRange(Theta, tol = 10^(-3), density = FALSE)

HyperbolicDist documentation built on Nov. 26, 2023, 9:07 a.m.